Compressibilidade do solo e sistema radicular da cana‑de‑açúcar em manejo com e sem controle de tráfego

The objective of this work was to compare the load-carrying capacity of the soil in a mechanically harvested sugarcane area, without burning, in managements with and without controlled traffic farming. Controlled traffic was done adjusting the gauges of tractor and trailer, or adjusting the gauges and using autopilot. Soil samples were collected in volumetric cylinders in plant rows and inter-rows (wheel rows), from 0.00-0.10 and 0.20-0.30-m soil depths. Root density was measured by images, obtained by scanning the collected roots in 0.25x0.10x0.10-m monoliths. The management without controlled traffic showed a higher load‑carrying capacity of the soil in the planting rows, in both soil layers, which indicates a higher compaction. Greater root density occurred in the management with controlled traffic with gauge adjustment and use of autopilot, which made possible a higher load‑carrying capacity in wheel rows, and preserved structural quality in the plant rows, resulting in a greater root system development of sugarcane.

[1]  L. A. C. Jorge,et al.  Avaliação do sistema radicular da cana-de-açúcar por diferentes métodos , 2003 .

[2]  M. Braunack,et al.  Effect of harvest traffic position on soil conditions and sugarcane (Saccharum officinarum) response to environmental conditions in Queensland, Australia , 2006 .

[3]  Douglas Rodrigo Kaiser,et al.  Compactação de um latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividade de feijão e trigo , 2008 .

[4]  M. V. Braunack,et al.  Traffic control and tillage strategies for harvesting and planting of sugarcane (Saccharum officinarum) in Australia , 2006 .

[5]  D. Fallow,et al.  Susceptibility to compaction, load support capacity, and soil compressibility of Hapludox , 2004 .

[6]  Ross Kingwell,et al.  The whole-farm benefits of controlled traffic farming: An Australian appraisal , 2011 .

[7]  P. Trivelin,et al.  Quantificação de raízes metabolicamente ativas de cana-de-açúcar , 2006 .

[8]  Z. D. Souza,et al.  Controle de tráfego agrícola e atributos físicos do solo em área cultivada com cana-de-açúcar , 2010 .

[9]  T. Keller,et al.  Challenges in the development of analytical soil compaction models , 2010 .

[10]  Fabio Henrique Rojo Baio,et al.  Estimation and evaluation of dynamic properties as indicators of changes on soil structure in sugarcane fields of Sao Paulo State - Brazil , 2009 .

[11]  J. M. Reichert,et al.  Estimativa da susceptibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul , 2008 .

[12]  José Ramon Barros Cantalice,et al.  Compressibilidade, resistência a penetração e intervalo hídrico ótimo de um Argissolo Amarelo cultivado com cana-de-açúcar nos Tabuleiros Costeiros de Alagoas , 2011 .

[13]  S. Imhoff,et al.  Estimativa da capacidade de suporte de carga do solo a partir da avaliação da resistência à penetração , 2006 .

[14]  Johan Arvidsson,et al.  Technical solutions to reduce the risk of subsoil compaction: effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil , 2004 .

[15]  Douglas Rodrigo Kaiser,et al.  Intervalo hídrico ótimo no perfil explorado pelas raízes de feijoeiro em um latossolo sob diferentes níveis de compactação , 2009 .

[16]  G. D. Vermeulen,et al.  Soil, crop and emission responses to seasonal-controlled traffic in organic vegetable farming on loam soil , 2009 .

[17]  Yu-Jun Cui,et al.  A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density. , 2009 .

[18]  H. Debiasi,et al.  Capacidade de suporte e compressibilidade de um argissolo, influenciadas pelo tráfego e por plantas de cobertura de inverno , 2008 .

[19]  A. J. Koolen,et al.  Soil precompression stress: II a comparison of different compaction tests and stress-displacement behaviour of the soil during wheeling , 2004 .