Circular RNA encoded MET variant promotes glioblastoma tumorigenesis

glioblastoma (GBM) tumorigenesis by interacting with the MET receptor and promoting MET signaling. Targeting MET404 with a newly developed antibody synergizes with the MET monoclonal antibody onartuzumab in inhibiting in vivo GBM xenograft growth

[1]  Hannah R. Weisman,et al.  Epigenetic encoding, heritability and plasticity of glioma transcriptional cell states , 2021, Nature Genetics.

[2]  X. Bai,et al.  Structural basis of the activation of c-MET receptor , 2021, Nature Communications.

[3]  Yan Li,et al.  HNRNPL Circularizes ARHGAP35 to Produce an Oncogenic Protein , 2021, Advanced science.

[4]  Tao Jiang,et al.  Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR–STAT3 signalling , 2021, Nature Cell Biology.

[5]  Bo Li,et al.  A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity , 2021, Genome Biology.

[6]  Zhaoyuan Fang,et al.  TransCirc: an interactive database for translatable circular RNAs based on multi-omics evidence , 2020, Nucleic Acids Res..

[7]  Qiulian Wu,et al.  The RNA m6A reader YTHDF2 maintains oncogene expression and is a targetable dependency in glioblastoma stem cells. , 2020, Cancer discovery.

[8]  Chaofeng Hou,et al.  The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs , 2020, Molecular Cancer.

[9]  H. Friedman,et al.  Management of glioblastoma: State of the art and future directions. , 2020, CA: a cancer journal for clinicians.

[10]  M. Gorospe,et al.  Ribonucleoprotein Immunoprecipitation (RIP) Analysis. , 2020, Bio-protocol.

[11]  Catherine L. Worth,et al.  The Translational Landscape of the Human Heart , 2019, Cell.

[12]  R. Nusse,et al.  Tissue repair in the mouse liver following acute carbon tetrachloride depends on injury-induced Wnt/β-catenin signaling , 2018, bioRxiv.

[13]  Qi Zhang,et al.  Translation of the circular RNA circβ-catenin promotes liver cancer cell growth through activation of the Wnt pathway , 2019, Genome Biology.

[14]  G. Finocchiaro,et al.  The landscape of the mesenchymal signature in brain tumours , 2019, Brain : a journal of neurology.

[15]  Lei He,et al.  IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3 , 2019, Nature Immunology.

[16]  Tao Jiang,et al.  Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor , 2018, Cell.

[17]  Gong Zhang,et al.  A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma , 2018, Nature Communications.

[18]  Jinjian Yang,et al.  circGprc5a Promoted Bladder Oncogenesis and Metastasis through Gprc5a-Targeting Peptide , 2018, Molecular therapy. Nucleic acids.

[19]  C. Bettegowda,et al.  Current state of immunotherapy for glioblastoma , 2018, Nature Reviews Clinical Oncology.

[20]  E. Lipp,et al.  Phase II Study to Evaluate the Efficacy and Safety of Rilotumumab and Bevacizumab in Subjects with Recurrent Malignant Glioma , 2018, The oncologist.

[21]  Jia Gu,et al.  fastp: an ultra-fast all-in-one FASTQ preprocessor , 2018, bioRxiv.

[22]  Martin Klein,et al.  Lomustine and Bevacizumab in Progressive Glioblastoma , 2017, The New England journal of medicine.

[23]  T. Mikkelsen,et al.  Phase II study of cabozantinib in patients with progressive glioblastoma: subset analysis of patients with prior antiangiogenic therapy , 2017, Neuro-oncology.

[24]  Chuan He,et al.  m6A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program. , 2017, Cancer cell.

[25]  Yang Zhang,et al.  Extensive translation of circular RNAs driven by N6-methyladenosine , 2017, Cell Research.

[26]  L. Recht,et al.  Randomized, Double-Blind, Placebo-Controlled, Multicenter Phase II Study of Onartuzumab Plus Bevacizumab Versus Placebo Plus Bevacizumab in Patients With Recurrent Glioblastoma: Efficacy, Safety, and Hepatocyte Growth Factor and O6-Methylguanine-DNA Methyltransferase Biomarker Analyses. , 2017, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[27]  Dima Kozakov,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[28]  G. Finocchiaro,et al.  MET inhibition overcomes radiation resistance of glioblastoma stem‐like cells , 2016, EMBO molecular medicine.

[29]  Chuan He,et al.  N 6 -methyladenosine Modulates Messenger RNA Translation Efficiency , 2015, Cell.

[30]  J. Trebicka,et al.  The carbon tetrachloride model in mice , 2015, Laboratory animals.

[31]  Steven L Salzberg,et al.  HISAT: a fast spliced aligner with low memory requirements , 2015, Nature Methods.

[32]  Li Wang,et al.  Crystal structure of the YTH domain of YTHDF2 reveals mechanism for recognition of N6-methyladenosine , 2014, Cell Research.

[33]  Petar Glažar,et al.  circBase: a database for circular RNAs , 2014, RNA.

[34]  T. Alain,et al.  Polysome Fractionation and Analysis of Mammalian Translatomes on a Genome-wide Scale , 2014, Journal of visualized experiments : JoVE.

[35]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[36]  P. Comoglio,et al.  The MET oncogene in glioblastoma stem cells: implications as a diagnostic marker and a therapeutic target. , 2013, Cancer research.

[37]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[38]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[39]  Rebecca A Betensky,et al.  Mosaic amplification of multiple receptor tyrosine kinase genes in glioblastoma. , 2011, Cancer cell.

[40]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[41]  M. Karamouzis,et al.  Targeting MET as a strategy to overcome crosstalk-related resistance to EGFR inhibitors. , 2009, The Lancet. Oncology.

[42]  Gerald C. Chu,et al.  P53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation , 2008, Nature.

[43]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[44]  Yoshihiro Yamanishi,et al.  KEGG for linking genomes to life and the environment , 2007, Nucleic Acids Res..

[45]  J. Laterra,et al.  Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. , 2005, Neuro-oncology.

[46]  Carmen Birchmeier,et al.  Met provides essential signals for liver regeneration. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[47]  Sandor Vajda,et al.  ClusPro: a fully automated algorithm for protein-protein docking , 2004, Nucleic Acids Res..

[48]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[49]  Carmen Birchmeier,et al.  Essential role for the c-met receptor in the migration of myogenic precursor cells into the limb bud , 1995, Nature.

[50]  C. Cooper,et al.  Biosynthesis of the protein encoded by the c-met proto-oncogene. , 1989, Oncogene.

[51]  Norbert Ritter,et al.  State of the Art and Future Directions , 2019, Real-Time & Stream Data Management.