While larger and larger turbines are being developed, hydraulic stability has become one of the key issues for their performance assessments. An accurate prediction of their pressure fluctuations is vital to the success of new model development. In this paper, we briefly introduced the method, i.e., the three-dimensional unsteady turbulent flow simulation of the complete flow passage, which we used for predicting the pressure fluctuations of a model Kaplan turbine. In order to verify the prediction, the model turbine was tested on the test rig at the Harbin Electric Machinery Co., Ltd. (HEC), China, which meets all the international standards. Our main findings from this numerical prediction of pressure fluctuations for a model Kaplan turbine are as follows. (1) The approach by using 3D unsteady turbulent flow including rotor-stator interaction for the whole flow passage is a feasible way for predicting model turbine hydraulic instability. The predicted values at different points along its flow passage all agree well with the test data in terms of their frequencies and amplitudes. (2) The low-frequency pressure fluctuation originating from the draft tube is maximal and influences the stability of the turbine operation mostly. The whole flow passage analysis shows that the swirling vortex rope in the draft tube is the major source generating the pressure fluctuations in this model turbine. (3) The second harmonic of the rotational frequency 2f(n) is more dominant than the blade passing frequency Zf(n) in the draft tube. This prediction, including the turbulence model, computational methods, and the boundary conditions, is valid either for performance prediction at design stage and/or for operation optimization after commissioning.
[1]
Nigel P. Weatherill,et al.
Unsteady flow simulation using unstructured meshes
,
2000
.
[2]
Shiyi Chen,et al.
Characteristics and Control of the Draft-Tube Flow in Part-Load Francis Turbine
,
2009
.
[3]
Liu Shuhong.
Unsteady turbulent simulation of Three Gorges hydraulic turbine and analysis of pressure in the whole passage
,
2004
.
[4]
Liu Shuhong.
Prediction of Pressure Fluctuation through Francis Turbine
,
2002
.
[5]
S. Orszag,et al.
Renormalization group analysis of turbulence. I. Basic theory
,
1986
.
[6]
Fotis Sotiropoulos,et al.
Numerical Simulation of Swirling Flow in Complex Hydroturbine Draft Tube Using Unsteady Statistical Turbulence Models
,
2005
.