Directionally Selective Motion Detection by Insect Neurons

Animals have several good reasons for detecting motion with their eyes. First, the motion of other animals — potential preys, mates, intruders or predators — provides essential information on which to base vital moves such as escape or chase. Secondly, information about self-motion is crucial, especially in the context of navigation, course stabilization, obstacle avoidance, and collision-free goal reaching. In fact, the wealth of information provided by passive, non-contact self-motion evaluation in visual systems has been likened to a kind of “visual kinaesthesis” (Gibson 1958). Even the 3D structure of the environment can be picked up by a moving observer (revs. Collett and Harkness 1982; Buchner 1984; Nakayama 1985; Hildreth and Koch 1987). Von Helmholtz (1867) was the first to clearly state the importance of this “motion parallax” in locomotion, and Exner (1891) proposed that arthropods make use of motion parallax as well as stereopsis to estimate distances (see also Horridge 1986).

[1]  R. Hardie Functional Organization of the Fly Retina , 1985 .

[2]  John B. Goodenough The Ada Compiler Validation Capability , 1981 .

[3]  V. Montero,et al.  Direction of movement as the significant stimulus parameter for some lateral geniculate cells in the rat. , 1969, Vision research.

[4]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[5]  M. Srinivasan The impulse response of a movement-detecting neuron and its interpretation , 1983, Vision Research.

[6]  Karl Georg Götz,et al.  Behavioral analysis of the visual system of the fruitfly Drosophila , 1965 .

[7]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[8]  R. Brubaker Models for the perception of speech and visual form: Weiant Wathen-Dunn, ed.: Cambridge, Mass., The M.I.T. Press, I–X, 470 pages , 1968 .

[9]  H. Hertel,et al.  The Physiology and Morphology of Centrally Projecting Visual Interneurones in the Honeybee Brain , 1987 .

[10]  W. Newsome,et al.  Motion selectivity in macaque visual cortex. I. Mechanisms of direction and speed selectivity in extrastriate area MT. , 1986, Journal of neurophysiology.

[11]  Dezsö Varjú Systemtheorie für Biologen und Mediziner , 1977 .

[12]  Shimon Ullman,et al.  Analysis of Visual Motion by Biological and Computer Systems , 1981, Computer.

[13]  J. Limb,et al.  Estimating the Velocity of Moving Images in Television Signals , 1975 .

[14]  D. Keehn,et al.  Two Types of Neurones Sensitive to Motion in the Optic Lobe of the Fly , 1966, Nature.

[15]  M. Sanders Handbook of Sensory Physiology , 1975 .

[16]  Martin Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. 2: Figure-dectection cells, a new class of visual interneurones , 1985 .

[17]  R. Jensen,et al.  Comparisons of directionally selective with other ganglion cells of the turtle retina: Intracellular recording and staining , 1983, The Journal of comparative neurology.

[18]  K. Kirschfeld The visual system of Musca: Studies on optics, structure and function , 1972 .

[19]  P. Marchiafava The responses of retinal ganglion cells to stationary and moving visual stimuli , 1979, Vision Research.

[20]  S Ullman,et al.  Artificial intelligence and the brain: computational studies of the visual system. , 1986, Annual review of neuroscience.

[21]  T. Collett,et al.  Vision during flight , 1975 .

[22]  Ken Nakayama,et al.  Biological image motion processing: A review , 1985, Vision Research.

[23]  M Wilcox,et al.  Illumination induces dye incorporation in photoreceptor cells. , 1984, Science.

[24]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  H. Barlow,et al.  The mechanism of directionally selective units in rabbit's retina. , 1965, The Journal of physiology.

[26]  S. Exner Die Physiologie der facettirten Augen von Krebsen und Insecten , 1891 .

[27]  Richard H. Masland,et al.  The cholinergic amacrine cell , 1986, Trends in Neurosciences.

[28]  T. Maddess,et al.  Afterimage-like effects in the motion-sensitive neuron H1 , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[29]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Ariel,et al.  Pharmacological analysis of directionally sensitive rabbit retinal ganglion cells , 1982, The Journal of physiology.

[31]  N. Franceschini,et al.  Pupil and Pseudopupil in the Compound Eye of Drosophila , 1972 .

[32]  R. Schmidt,et al.  Progress in Sensory Physiology , 1991, Progress in Sensory Physiology.

[33]  V. V. Solodovnikov,et al.  Dynamique statistique des systèmes linéaires de commande automatique , 1965 .

[34]  M. Egelhaaf On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly , 1985 .

[35]  Roger C. Hardie,et al.  The photoreceptor array of the dipteran retina , 1986, Trends in Neurosciences.

[36]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[37]  F. Newell Information Processing in the Visual Systems of Arthropods , 1973 .

[38]  W. Reichardt Movement perception in insects , 1969 .

[39]  K. Kirschfeld,et al.  Lateral Inhibition in the Com pound Eye of the Fly, Musca , 1974, Zeitschrift fur Naturforschung. Section C, Biosciences.

[40]  R. Nicoll Neurotransmitters can say more than just ‘yes’ or ‘no’ , 1982, Trends in Neurosciences.

[41]  Nicholas J. Strausfeld,et al.  Principles of the Mosaic Organisation in the Visual System’s Neuropil of Musca domestica L , 1973 .

[42]  G. D. Mccann,et al.  Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. , 1968, Journal of neurophysiology.

[43]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[44]  R. Shapley,et al.  Photoreception and Vision in Invertebrates , 1984, NATO ASI Series.

[45]  J. F. Schouten,et al.  Subjective stroboscopy and a model of visual movement detectors , 1966 .

[46]  George Adrian Horridge,et al.  Extracellular recordings from single neurons in the optic lobe and brain of the locust , 1965 .

[47]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[48]  W Reichardt,et al.  Autocorrelation, a principle for evaluation of sensory information by the central nervous system , 1961 .

[49]  Robert R. de Ruyter van Steveninck,et al.  Adaptive strategies in fly vision: On their image-processing qualities , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[50]  D. R. Dvorak,et al.  Responses to single photons in a fly optomotor neurone , 1981, Vision Research.

[51]  Mandyam V. Srinivasan,et al.  The contrast sensitivity of fly movement-detecting neurons , 1980, Vision Research.

[52]  K. Hausen The Lobula-Complex of the Fly: Structure, Function and Significance in Visual Behaviour , 1984 .

[53]  G. Horridge The Compound eye and vision of insects , 1975 .

[54]  R. Wehner Spatial Vision in Arthropods , 1981 .

[55]  Tomaso Poggio,et al.  From Understanding Computation to Understanding Neural Circuitry , 1976 .

[56]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part II. Towards the underlying neural interactions , 1976, Quarterly Reviews of Biophysics.

[57]  J. Treherne,et al.  The physiology of the insect central nervous system. Papers from the 12th International Congress of Entomology held in London, 1964. , 1965 .

[58]  E. Sture Eriksson Neural responses to depth-motion stimulation in a horizontally sensitive interneurone in the optic lobe of the blowfly (Phormia terraenovae) , 1982 .

[59]  K. Kirschfeld DAS NEURALE SUPERPOSITIONSAUGE , 1973 .

[60]  Doekele G. Stavenga,et al.  A.6 Optical Qualities of the Fly Eye — An Approach from the Side of Geometrical, Physical and Waveguide Optics , 1975 .

[61]  Claude L. Fennema,et al.  Velocity determination in scenes containing several moving objects , 1979 .

[62]  K. Hausen Functional Characterization and Anatomical Identification of Motion Sensitive Neurons in the Lobula plate of the Blowfly Calliphora erythrocephala , 1976 .

[63]  K G Götz,et al.  Principles of optomotor reactions in insects. , 1972, Bibliotheca ophthalmologica : supplementa ad ophthalmologica.

[64]  H. A. K. Mastebroek,et al.  Movement detection: Performance of a wide-field element in the visual system of the blowfly , 1980, Vision Research.

[65]  Werner Reichardt,et al.  Processing of optical data by organisms and by machines , 1969 .

[66]  H. Hertel,et al.  The physiology and morphology of visual commissures in the honeybee brain , 1987 .

[67]  B. Bush,et al.  AFFERENT VISUAL RESPONSES IN THE OPTIC NERVE OF THE CRAB, PODOPHTHALMUS. , 1964, Journal of cellular and comparative physiology.

[68]  Nicolas Franceschini,et al.  Chromatic Organization and Sexual Dimorphism of the Fly Retinal Mosaic , 1984 .

[69]  W. A. Knorre D. Varjú, Systemtheorie für Biologen und Mediziner. 285 S., 80 Abb., Berlin‐Heidelberg‐New York 1977. Springer‐Verlag. DM 24,80 , 1981 .

[70]  T. Collett,et al.  Binocular, Directionally Selective Neurones, Possibly Involved in the Optomotor Response of Insects , 1966, Nature.

[71]  R. C. Emerson,et al.  Simple striate neurons in the cat. II. Mechanisms underlying directional asymmetry and directional selectivity. , 1977, Journal of neurophysiology.

[72]  N. Franceschini,et al.  In-vivo microspectrofluorimetry of visual pigments. , 1983, Symposia of the Society for Experimental Biology.

[73]  J. Koenderink,et al.  The distribution of human motion detector properties in the monocular visual field , 1986, Vision Research.

[74]  O. Trujillo-Cenóz,et al.  The Structural Organization of the Compound Eye in Insects , 1972 .

[75]  Werner Reichardt,et al.  Optics of the compound eye , 1969 .

[76]  George Adrian Horridge,et al.  A theory of insect vision: velocity parallax , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[77]  W. Reichardt Autokorrelations-Auswertung als Funktionsprinzip des Zentralnervensystems , 1957 .

[78]  S. Shaw Early visual processing in insects. , 1984, The Journal of experimental biology.

[79]  W. Pitts,et al.  What the Frog's Eye Tells the Frog's Brain , 1959, Proceedings of the IRE.

[80]  G. D. Mccann,et al.  Optomotor response studies of insect vision , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[81]  F. Claire Rind,et al.  A DIRECTIONALLY SENSITIVE MOTION DETECTING NEURONE IN THE BRAIN OF A MOTH , 1983 .

[82]  K Hausen Monokulare und binokulare Bewegungsauswertung in der Lobula plate der Fliege , 1981 .

[83]  S. Watanabe,et al.  Synaptic mechanisms of directional selectivity in ganglion cells of frog retina as revealed by intracellular recordings. , 1984, The Japanese journal of physiology.

[84]  C. Koch,et al.  Functional properties of models for direction selectivity in the retina , 1987, Synapse.

[85]  Michael O'Shea,et al.  Complex Neural Integration and Identified Interneurons in the Locust Brain , 1977 .

[86]  R. Mansfield,et al.  Analysis of visual behavior , 1982 .

[87]  F. Amthor,et al.  Morphology of on-off direction-selective ganglion cells in the rabbit retina , 1984, Brain Research.

[88]  G. Hoyle,et al.  Identified Neurons and Behavior of Arthropods , 1977, Springer US.

[89]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[90]  Gilbert D. McCann,et al.  Spectral and Polarization Sensitivity of the Dipteran Visual System , 1972, The Journal of general physiology.

[91]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[92]  H. Bülthoff,et al.  Analogous motion illusion in man and fly , 1979, Nature.

[93]  G. D. Mccann,et al.  Fundamental Properties of Intensity, Form, and Motion Perception in the Visual Nervous Systems of Calliphora phaenicia and Musca domestica , 1969, The Journal of general physiology.

[94]  N. J. Strausfeld,et al.  The resolution of neuronal assemblies after cobalt injection into neuropil , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[95]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[96]  S. Exner,et al.  Entwurf zu einer physiologischen Erklärung der psychischen Erscheinungen , 1894 .

[97]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[98]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[99]  W Reichardt,et al.  Visual control of orientation behaviour in the fly: Part I. A quantitative analysis , 1976, Quarterly Reviews of Biophysics.

[100]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[101]  S. Laughlin,et al.  Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[102]  G. A. Kerkut,et al.  Comprehensive insect physiology, biochemistry, and pharmacology , 1985 .

[103]  Nicolas Franceschini,et al.  Sampling of the Visual Environment by the Compound Eye of the Fly: Fundamentals and Applications , 1975 .

[104]  Christian Wehrhahn,et al.  Visual guidance of flies during flight , 1985 .

[105]  N. Franceschini,et al.  Early processing of colour and motion in a mosaic visual system. , 1985, Neuroscience research. Supplement : the official journal of the Japan Neuroscience Society.