Optimizing MR Scan Design for Model-Based T1, T2 Estimation From Steady-State Sequences

Rapid, reliable quantification of MR relaxation parameters T1 and T2 is desirable for many clinical applications. Steady-state sequences such as Spoiled Gradient-Recalled Echo (SPGR) and Dual-Echo Steady-State (DESS) are fast and wellsuited for relaxometry because the signals they produce are quite sensitive to T1 and T2 variation. However, T1, T2 estimation with these sequences typically requires multiple scans with varied sets of acquisition parameters. This paper describes a systematic framework for selecting scan types (e.g., combinations of SPGR and DESS scans) and optimizing their respective parameters (e.g., flip angles and repetition times). The method is based on a Cramér-Rao Bound (CRB)-inspired min-max optimization that finds scan parameter combinations that robustly enable precise object parameter estimation. We apply this technique to optimize combinations of SPGR and DESS scans for T1, T2 relaxometry in white matter (WM) and grey matter (GM) regions of the human brain at 3T field strength. Phantom accuracy experiments show that SPGR/DESS scan combinations are in excellent agreement with reference measurements. Phantom precision experiments show that trends in T1, T2 pooled sample standard deviations reflect CRB-based predictions. In vivo experiments show that in WM and GM, T1 and T2 estimates from a pair of optimized DESS scans exhibit precision (but not necessarily accuracy) comparable to that of optimized combinations of SPGR and DESS scans. To our knowledge, T1 maps from DESS acquisitions alone are new. This example application illustrates that scan optimization may help reveal new parameter mapping techniques from combinations of established pulse sequences.

[1]  M. L. Wood,et al.  Spoiling of transverse magnetization in steady‐state sequences , 1991, Magnetic resonance in medicine.

[2]  Oded Gonen,et al.  Optimizing the precision‐per‐unit‐time of quantitative MR metrics: Examples for T1, T2, and DTI , 2007, Magnetic resonance in medicine.

[3]  J. Olesen,et al.  In vivo determination of T1 and T2 in the brain of patients with severe but stable multiple sclerosis , 1988, Magnetic resonance in medicine.

[4]  David M Higgins,et al.  Modified Look‐Locker inversion recovery (MOLLI) for high‐resolution T1 mapping of the heart , 2004, Magnetic resonance in medicine.

[5]  J. Gore,et al.  Errors in the measurements of T2 using multiple‐echo MRI techniques. II. Effects of static field inhomogeneity , 1986, Magnetic resonance in medicine.

[6]  N J Pelc,et al.  Rapid calculation of T1 using variable flip angle gradient refocused imaging. , 1987, Magnetic resonance imaging.

[7]  K. Scheffler A pictorial description of steady-states in rapid magnetic resonance imaging , 1999 .

[8]  Oliver Bieri,et al.  Rapid estimation of cartilage T2 with reduced T1 sensitivity using double echo steady state imaging , 2014, Magnetic resonance in medicine.

[9]  P L Carson,et al.  Determination of sample time for T1 measurement , 1998, Journal of magnetic resonance imaging : JMRI.

[10]  J. Duerk,et al.  Magnetic Resonance Fingerprinting , 2013, Nature.

[11]  Bob S. Hu,et al.  Fast Spiral Coronary Artery Imaging , 1992, Magnetic resonance in medicine.

[12]  A. Macovski Noise in MRI , 1996, Magnetic resonance in medicine.

[13]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[14]  W. Hinshaw,et al.  Image formation by nuclear magnetic resonance: The sensitive‐point method , 1976 .

[15]  Garry E Gold,et al.  Quantitative MRI techniques of cartilage composition. , 2013, Quantitative imaging in medicine and surgery.

[16]  Kevin C. Chan,et al.  Myocardial T2 quantitation in patients with iron overload at 3 Tesla , 2009, Journal of magnetic resonance imaging : JMRI.

[17]  E. Purcell,et al.  Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments , 1954 .

[18]  Jeffrey A. Fessler,et al.  Optimizing MR Scan Design for Model-Based ${T}_{1}$ , ${T}_{2}$ Estimation From Steady-State Sequences , 2017, IEEE Transactions on Medical Imaging.

[19]  Leslie Ying,et al.  Joint image reconstruction and sensitivity estimation in SENSE (JSENSE) , 2007, Magnetic resonance in medicine.

[20]  F Langevin,et al.  Two-point method for T1 estimation with optimized gradient-echo sequence. , 1999, Magnetic resonance imaging.

[21]  M Kormano,et al.  Tissue characterization of intracranial tumors by magnetization transfer and spin‐lattice relaxation parameters in vivo , 1996, Journal of magnetic resonance imaging : JMRI.

[22]  D. Look,et al.  Time Saving in Measurement of NMR and EPR Relaxation Times , 1970 .

[23]  Justin P. Haldar,et al.  Optimal experiment design for magnetic resonance fingerprinting , 2016, 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[24]  S. Patz,et al.  Analytical solution and verification of diffusion effect in SSFP , 1991, Magnetic resonance in medicine.

[25]  Jeffrey A. Fessler,et al.  Nonuniform fast Fourier transforms using min-max interpolation , 2003, IEEE Trans. Signal Process..

[26]  W. Hänicke,et al.  An analytical solution for the SSFP signal in MRI , 2003, Magnetic resonance in medicine.

[27]  Shannon H Kolind,et al.  One component? Two components? Three? The effect of including a nonexchanging “free” water component in multicomponent driven equilibrium single pulse observation of T1 and T2 , 2013, Magnetic resonance in medicine.

[28]  F. Wiesinger,et al.  B1 mapping by Bloch‐Siegert shift , 2010, Magnetic resonance in medicine.

[29]  R. Henkelman,et al.  Practical Implementation and Optimization of One‐shot T1 imaging , 1991, Magnetic resonance in medicine.

[30]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[31]  P. Gowland,et al.  Fast and accurate measurements of T1 using a multi‐readout single inversion‐recovery sequence , 1992, Magnetic resonance in medicine.

[32]  Hesheng Wang,et al.  Spatially regularized T(1) estimation from variable flip angles MRI. , 2012, Medical physics.

[33]  H Bruder,et al.  A new steady‐state imaging sequence for simultaneous acquisition of two MR images with clearly different contrasts , 1988, Magnetic resonance in medicine.

[34]  O. Simonetti,et al.  T2 quantification for improved detection of myocardial edema , 2009, Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance.

[35]  S. Deoni,et al.  Transverse relaxation time (T2) mapping in the brain with off‐resonance correction using phase‐cycled steady‐state free precession imaging , 2009, Journal of magnetic resonance imaging : JMRI.

[36]  Kim Mouridsen,et al.  Quantitative T 2 Values Predict Time From Symptom Onset in Acute Stroke Patients , 2009 .

[37]  Jeffrey A. Fessler Mean and variance of implicitly defined biased estimators (such as penalized maximum likelihood): applications to tomography , 1996, IEEE Trans. Image Process..

[38]  Jonathan A. Jones,et al.  Optimal Sampling Strategies for the Measurement of Spin–Spin Relaxation Times , 1996 .

[39]  Daniel Brenner,et al.  MR parameter quantification with magnetization‐prepared double echo steady‐state (MP‐DESS) , 2014, Magnetic resonance in medicine.

[40]  S. Riederer,et al.  Optimizing the precision in T1 relaxation estimation using limited flip angles , 1987, Magnetic resonance in medicine.

[41]  Jeffrey A. Fessler,et al.  REGULARIZED B1+ MAP ESTIMATION IN MRI , 2007, 2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[42]  A. Raj,et al.  Bayesian algorithm using spatial priors for multiexponential T2 relaxometry from multiecho spin echo MRI , 2012, Magnetic resonance in medicine.

[43]  H. Chernoff Locally Optimal Designs for Estimating Parameters , 1953 .

[44]  George H. Weiss,et al.  The choice of optimal parameters for measurement of spin-lattice relaxation times. I. Mathematical formulation , 1980 .

[45]  C. Ahn,et al.  High-Speed Spiral-Scan Echo Planar NMR Imaging-I , 1986, IEEE Transactions on Medical Imaging.

[46]  G. Golub,et al.  Separable nonlinear least squares: the variable projection method and its applications , 2003 .

[47]  M. Gyngell,et al.  The steady-state signals in short-repetition-time sequences , 1989 .

[48]  Oliver Bieri,et al.  Triple‐echo steady‐state T2 relaxometry of the human brain at high to ultra‐high fields , 2014, NMR in biomedicine.

[49]  B. Rutt,et al.  Rapid combined T1 and T2 mapping using gradient recalled acquisition in the steady state , 2003, Magnetic resonance in medicine.

[50]  Klaus Scheffler,et al.  Rapid estimation of cartilage T2 based on double echo at steady state (DESS) with 3 Tesla , 2009, Magnetic resonance in medicine.

[51]  Dwight G Nishimura,et al.  A robust methodology for in vivo T1 mapping , 2010, Magnetic resonance in medicine.

[52]  D. Louis Collins,et al.  Design and construction of a realistic digital brain phantom , 1998, IEEE Transactions on Medical Imaging.

[53]  Mehmet Akçakaya,et al.  On the selection of sampling points for myocardial T1 mapping , 2015, Magnetic resonance in medicine.

[54]  J. Pauly,et al.  Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm [NMR imaging]. , 1991, IEEE transactions on medical imaging.

[55]  Richard R. Ernst,et al.  Diffusion and field‐gradient effects in NMR Fourier spectroscopy , 1974 .

[56]  Elna-Marie Larsson,et al.  Relaxation times in relation to grade of malignancy and tissue necrosis in astrocytic gliomas , 1986 .

[57]  L. Bolinger,et al.  Mapping of the Radiofrequency Field , 1993 .

[58]  Rory A. Fisher,et al.  Theory of Statistical Estimation , 1925, Mathematical Proceedings of the Cambridge Philosophical Society.

[59]  J. Boire,et al.  T2 maximum likelihood estimation from multiple spin‐echo magnitude images , 1996, Magnetic resonance in medicine.

[60]  R B Buxton,et al.  Slice profile effects in adiabatic inversion: Application to multislice perfusion imaging , 1997, Magnetic resonance in medicine.

[61]  Cheng Guan Koay,et al.  Data‐driven optimized flip angle selection for T1 estimation from spoiled gradient echo acquisitions , 2016, Magnetic resonance in medicine.

[62]  J. Haldar,et al.  Maximum Likelihood Estimation of T 1 Relaxation Parameters Using VARPRO , 2007 .

[63]  Jeffrey A. Fessler,et al.  Fast Parallel MR Image Reconstruction via B1-Based, Adaptive Restart, Iterative Soft Thresholding Algorithms (BARISTA) , 2015, IEEE Transactions on Medical Imaging.

[64]  Nikola Stikov,et al.  Practical medical applications of quantitative MR relaxometry , 2012, Journal of magnetic resonance imaging : JMRI.

[65]  T. Peters,et al.  Determination of optimal angles for variable nutation proton magnetic spin‐lattice, T1, and spin‐spin, T2, relaxation times measurement , 2004, Magnetic resonance in medicine.

[66]  Oliver Bieri,et al.  SSFP signal with finite RF pulses , 2009, Magnetic resonance in medicine.

[67]  M. Fukushima,et al.  Levenberg–Marquardt methods with strong local convergence properties for solving nonlinear equations with convex constraints , 2004 .

[68]  R. Gill,et al.  Applications of the van Trees inequality : a Bayesian Cramr-Rao bound , 1995 .

[69]  Terry M Peters,et al.  Rapid T2 estimation with phase‐cycled variable nutation steady‐state free precession , 2004, Magnetic resonance in medicine.

[70]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[71]  J C Gore,et al.  Errors in the measurements of T2 using multiple‐echo MRI techniques. I. Effects of radiofrequency pulse imperfections , 1986, Magnetic resonance in medicine.

[72]  Jeffrey A. Fessler,et al.  Regularized estimation of Bloch-Siegert |B1+| maps in MRI , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[73]  Jeffrey A. Fessler,et al.  Model-based estimation of T2 maps with dual-echo steady-state MR imaging , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[74]  R. Turner,et al.  Echo-planar imaging: magnetic resonance imaging in a fraction of a second. , 1991, Science.

[75]  Tianhu Lei Statistics of MR signals: revisited , 2007, SPIE Medical Imaging.

[76]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[77]  F. Buonanno,et al.  NMR-neuropathologic correlation in stroke. , 1987, Stroke.

[78]  Oliver Bieri,et al.  Triple echo steady‐state (TESS) relaxometry , 2014, Magnetic resonance in medicine.

[79]  Lee Friedman,et al.  Report on a multicenter fMRI quality assurance protocol , 2006, Journal of magnetic resonance imaging : JMRI.

[80]  Ed X. Wu,et al.  Effect of diffusion on the steady-state magnetization with pulsed field gradients , 1990 .

[81]  A. MacKay,et al.  In vivo visualization of myelin water in brain by magnetic resonance , 1994, Magnetic resonance in medicine.

[82]  S. Holland,et al.  NMR relaxation times in the human brain at 3.0 tesla , 1999, Journal of magnetic resonance imaging : JMRI.