Energy gaps, charge distribution and optical properties of AlxIn1−xSb ternary alloys

Abstract The electronic and optical properties of AlxIn1−xSb ternary alloys have been investigated using a pseudopotential approach within the virtual crystal approximation. The effect of alloy disorder on the studied properties has been examined and found to be weak. The extent of the direct-to-indirect band gap transition is found to occur at x = 0.73. Our results agree well with those reported in the literature. Trends in bonding and ionicity are discussed by means of the electron charge distribution. The present study may be a useful information for mid-infrared inter band cascade lasers applications and other antimonide device structures.

[1]  M. Edirisooriya,et al.  Reduction of microtwin defects for high-electron-mobility InSb quantum wells , 2007 .

[2]  N. Bouarissa Pseudopotential study of bonding and ionicity in InP at various pressures , 1999 .

[3]  N. Bouarissa Electronic properties of GaxIn1−xP from pseudopotential calculations , 2010 .

[4]  Marvin L. Cohen,et al.  Special Points in the Brillouin Zone , 1973 .

[5]  T. Ashley,et al.  Mid-infrared AlxIn1−xSb light-emitting diodes , 2007 .

[6]  Michael A. Littlejohn,et al.  Energy bandgap and lattice constant contours of iii–v quaternary alloys , 1978 .

[7]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[8]  Richardson,et al.  Electron charge densities at conduction-band edges of semiconductors. , 1986, Physical review. B, Condensed matter.

[9]  C. Kim,et al.  Band structure of ternary compound semiconductors beyond the virtual crystal approximation , 1990 .

[10]  Y. N. Ahammed,et al.  A study on the Moss relation , 1995 .

[11]  Suman Datta,et al.  Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications , 2007 .

[12]  I. Vurgaftman,et al.  High-power/low-threshold type-II interband cascade mid-IR laser-design and modeling , 1997, IEEE Photonics Technology Letters.

[13]  T. Ashley,et al.  Lateral n–i–p junctions formed in an InSb quantum well by bevel etching , 2005 .

[15]  Determination of the concentration and temperature dependence of the fundamental energy gap in AlxIn1−xSb , 1998 .

[16]  Composition and lattice mismatch dependent dielectric constants and optical phonon modes of InAs 1- x - y Sb x P y quaternary alloys , 2014 .

[17]  Sadao Adachi,et al.  Band gaps and refractive indices of AlGaAsSb, GaInAsSb, and InPAsSb: Key properties for a variety of the 2–4‐μm optoelectronic device applications , 1987 .

[18]  Sadao Adachi,et al.  Properties of Group-IV, III-V and II-VI Semiconductors: Adachi/Properties of Group-IV, III-V and II-VI Semiconductors , 2005 .

[19]  C. Alibert,et al.  Modulation-spectroscopy study of the Ga 1 − x Al x Sb band structure , 1983 .

[20]  N. Bouarissa Band gaps and charge distribution in quasi-binary (GaSb) (InAs) crystals , 2003 .

[21]  Jerry R. Meyer,et al.  Band parameters for III–V compound semiconductors and their alloys , 2001 .

[22]  T. Moss A Relationship between the Refractive Index and the Infra-Red Threshold of Sensitivity for Photoconductors , 1950 .

[23]  Nuggehalli M. Ravindra,et al.  Energy gap refractive index relations in semiconductors An overview , 2007 .

[24]  Stanley D. Smith,et al.  Comparison of IR LED gas sensors with thermal source products , 1997 .

[25]  N. Ravindra,et al.  Variation of refractive index with energy gap in semiconductors , 1979 .

[26]  L.K.J. Vandamme,et al.  General relation between refractive index and energy gap in semiconductors , 1994 .

[27]  N. Bouarissa The behaviour of electron valence and conduction charge densities in InP under pressure , 2000 .

[28]  V. P. Gupta,et al.  Comments on the Moss Formula , 1980 .

[29]  J. Chelikowsky,et al.  Electronic Structure and Optical Properties of Semiconductors , 1989 .

[30]  R. R. Reddy,et al.  Analysis of the Moss and Ravindra relations , 1992 .

[31]  N. Bouarissa Effects of compositional disorder upon electronic and lattice properties of GaxIn1−xAs , 1998 .

[32]  Marvin J. Weber,et al.  Handbook of Optical Materials , 2002 .

[33]  N. Bouarissa,et al.  Band parameters for AlAs, InAs and their ternary mixed crystals , 2008 .

[34]  N. Bouarissa,et al.  Energy band gaps for the GaxIn1−xAsyP1−y alloys lattice matched to different substrates , 2006 .

[35]  N. Goel,et al.  Ballistic transport in InSb quantum wells at high temperature , 2004 .

[36]  David J. Frank,et al.  Empirical fit to band discontinuities and barrier heights in III–V alloy systems , 1992 .

[37]  N. Bouarissa Optical and vibrational properties of quasi-binary (GaSb)1−x(InAs)x crystals , 2006 .

[38]  M. Al‐Assiri,et al.  Electronic band structure and derived properties of AlAsxSb1−x alloys , 2013 .

[39]  J. Woolley,et al.  Electroreflectance Spectra of AlxIn1−xSb Alloys , 1974 .

[40]  M. Edirisooriya,et al.  Dislocation-filtering AlInSb buffer layers for InSb quantum wells—Analysis by high-tilt bright-field and dark-field TEM , 2010 .

[41]  Yiping Zeng,et al.  Transport properties in AlInSb/InAsSb heterostructures , 2013 .

[42]  N. Bouarissa Pseudopotential calculations of Cd1−xZnxTe: Energy gaps and dielectric constants , 2007 .

[43]  T. Ashley,et al.  Quantum well mobility and the effect of gate dielectrics in remote doped InSb/AlxIn1 − xSb heterostructures , 2010 .