Numerical simulation of primary break-up and atomization: DNS and modelling study

This work deals with numerical simulations of atomization with high Weber and Reynolds values. A special attention has been devoted to the modelling of primary break-up. Due to progress of direct numerical simulations (DNS) of two phase flows it is now possible to simulate the primary break-up of a Diesel spray [Menard, T., Tanguy, S., Berlemont, A., 2007. Coupling level set/VOF/ghost fluid methods: validation and application to 3D simulation of the primary break-up of a liquid jet. Int. J. Multiphase Flow 33 (5), 510-524]. The present formulation of the so-called ELSA (Eulerian-Lagrangian Spray Atomization model) [Vallet, A., Borghi, R., 1999. Modelisation Eulerienne de Vatomisation d'un jet Liquide. C. R. Acad. Sci. Paris Ser II b 327, 1015-1020] for atomization is presented and evaluated in the dense zone of the spray by comparison to a DNS based on a coupled level set/VOF/ghost fluid method. Once constants and parameters of the model are fixed thanks to comparisons with DNS, the model is tested with experimental data. The liquid and vapour penetrations show a good agreement when they are compared to experiments of Diesel atomization. In particular the influence of the gas temperature is well recovered. For different temperatures, similarly to the experiments, vapour penetrations are unchanged, but the corresponding equivalent ratio fields are strongly modified. Finally, the combustion model ECFM-3Z [Colin, O., Benkenida, A., 2004. The 3-zones extended coherent flame model (ecfm-3z) for computing premixed/diffusion combustion. Oil Gas Sci. Technol. 59 (6) 593-609] is joined to the ELSA model and the effect of gas temperature changes on a Diesel spray flame is reproduced. (C) 2008 Elsevier Ltd. All rights reserved.

[1]  Christopher F. Powell,et al.  QUANTITATIVE MEASUREMENTS OF DIESEL FUEL SPRAY CHARACTERISTICS IN THE NEAR-NOZZLE REGION USING X-RAY ABSORPTION , 2001 .

[2]  Isao Kataoka,et al.  Local instant formulation of two-phase flow , 1986 .

[3]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[4]  Humberto Chaves,et al.  VELOCITY MEASUREMENTS OF DENSE DIESEL FUEL SPRAYS IN DENSE AIR , 2004 .

[5]  A. Burluka,et al.  DEVELOPMENT OF A EULERIAN MODEL FOR THE “ATOMIZATION” OF A LIQUID JET , 2001 .

[6]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P.-A. Beau,et al.  Applying Quasi-Multiphase Model to Simulate Atomization Processes in Diesel Engines: Modeling of the Slip Velocity , 2005 .

[8]  Ariane Vallet,et al.  Modélisation eulerienne de l'atomisation d'un jet liquide , 1999 .

[9]  S. Osher,et al.  An improved level set method for incompressible two-phase flows , 1998 .

[10]  Chung King Law,et al.  Regimes of coalescence and separation in droplet collision , 1997, Journal of Fluid Mechanics.

[11]  M. Ishii Thermo-fluid dynamic theory of two-phase flow , 1975 .

[12]  J. Ponstein,et al.  Instability of rotating cylindrical jets , 1959 .

[13]  S. Jay,et al.  Combined surface density concepts for dense spray combustion , 2006 .

[14]  Suk Goo Yoon,et al.  Droplet distributions at the liquid core of a turbulent spray , 2005 .

[15]  C. Morel On the surface equations in two-phase flows and reacting single-phase flows , 2007 .

[16]  L. Rayleigh On The Instability Of Jets , 1878 .

[17]  G. Kreiss,et al.  A conservative level set method for two phase flow II , 2005, Journal of Computational Physics.

[18]  R. Reitz,et al.  MODELING SPRAY ATOMIZATION WITH THE KELVIN-HELMHOLTZ/RAYLEIGH-TAYLOR HYBRID MODEL , 1999 .

[19]  M. Sussman,et al.  A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flows , 2000 .

[20]  P. Wesseling,et al.  A mass‐conserving Level‐Set method for modelling of multi‐phase flows , 2005 .

[21]  J. Abraham,et al.  An Evaluation of a Two-Fluid Eulerian-Liquid Eulerian-Gas Model for Diesel Sprays , 2003 .

[22]  W. Sirignano,et al.  Droplet vaporization model for spray combustion calculations , 1989 .

[23]  A. Burluka,et al.  Average Vaporisation Rate in Turbulent Subcritical Two-Phase Flow , 2008 .

[24]  M. Ishii,et al.  Thermo-Fluid Dynamics of Two-Phase Flow , 2007 .

[25]  S. Heister,et al.  A fully non-linear model for atomization of high-speed jets , 2004 .

[26]  J. Abraham,et al.  Exploring injected droplet size effects on steady liquid penetration in a Diesel spray with a two-fluid model , 2002 .

[27]  Dennis L. Siebers,et al.  Measurement of the Flame Lift-Off Location on DI Diesel Sprays Using OH Chemiluminescence , 2001 .

[28]  A. Benkenida,et al.  The 3-Zones Extended Coherent Flame Model (Ecfm3z) for Computing Premixed/Diffusion Combustion , 2004 .

[29]  R. Reitz Modeling atomization processes in high-pressure vaporizing sprays , 1987 .

[30]  J. Plateau,et al.  Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires , 1873 .

[31]  Rolf D. Reitz,et al.  MODELING THE PRIMARY BREAKUP OF HIGH-SPEED JETS , 2004 .

[32]  F. X. Demoulin,et al.  A new model for turbulent flows with large density fluctuations : application to liquid atomization , 2007 .

[33]  S. Tanguy,et al.  NUMERICAL JET ATOMIZATION. PART II: MODELING INFORMATION AND COMPARISON WITH DNS RESULTS , 2006 .

[34]  M. Pilch,et al.  Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop , 1987 .

[35]  J. Blaisot,et al.  Droplet size and morphology characterization for dense sprays by image processing: application to the Diesel spray , 2005 .

[36]  Stephen D. Heister,et al.  A nonlinear atomization model for computation of drop size distributions and spray simulations , 2005 .

[37]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[38]  M. Ishii,et al.  One-dimensional drift-flux model and constitutive equations for relative motion between phases in various two-phase flow regimes , 2003 .

[39]  Mark Linne,et al.  Ballistic imaging of the near field in a diesel spray , 2006 .

[40]  R. Fedkiw,et al.  A Boundary Condition Capturing Method for Poisson's Equation on Irregular Domains , 2000 .

[41]  Ronald Fedkiw,et al.  A Boundary Condition Capturing Method for Multiphase Incompressible Flow , 2000, J. Sci. Comput..

[42]  Philippe Marmottant,et al.  On spray formation , 2004, Journal of Fluid Mechanics.

[43]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[44]  B. Barbeau,et al.  A 3D Eulerian model to improve the primary breakup of atomizing jet , 2003 .

[45]  Michael Fairweather,et al.  Assessment of Σ−Yliq model predictions for air-assisted atomisation , 2007 .

[46]  T. Ménard,et al.  Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet , 2007 .

[47]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[48]  Rolf D. Reitz,et al.  A ONE-DIMENSIONAL BREAKUP MODEL FOR LOW-SPEED JETS , 2002 .

[49]  Christopher F. Powell,et al.  Quantitative analysis of highly transient fuel sprays by time-resolved x-radiography , 2003 .

[50]  F. X. Demoulin,et al.  Coupling Vaporization Model With the Eulerian-Lagrangian Spray Atomization (ELSA) Model in Diesel Engine Conditions , 2005 .

[51]  F. E. Marble,et al.  The coherent flame model for turbulent chemical reactions. Final report 1 Mar 75--31 Jan 77 , 1977 .

[52]  Mamoru Ishii,et al.  Foundation of the interfacial area transport equation and its closure relations , 1995 .