Gap theorems for Lagrangian submanifolds in complex space forms

[1]  James Simons,et al.  Minimal Varieties in Riemannian Manifolds , 1968 .

[2]  Hong-wei Xu A rigidity theorem for submanifolds with parallel mean curvature in a sphere , 1993 .

[3]  Bang-Yen Chen,et al.  RIEMANNIAN GEOMETRY OF LAGRANGIAN SUBMANIFOLDS , 2001 .

[4]  K. Shiohama,et al.  A general rigidity theorem for complete submanifolds , 1998, Nagoya Mathematical Journal.

[5]  Shiing-Shen Chern,et al.  Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length , 1970 .

[6]  A. Ros,et al.  Lagrangian submanifolds of $C^{n}$ with conformal Maslov form and the Whitney sphere , 1998 .

[7]  An-Min Li,et al.  An intrinsic rigidity theorem for minimal submanifolds in a sphere , 1992 .

[8]  L. Vrancken,et al.  A basic inequality and new characterization of Whitney spheres in a complex space form , 2005 .

[9]  F. Urbano,et al.  Closed conformal vector fields and Lagrangian submanifolds in complex space forms , 2001 .

[10]  Jiabin Yin,et al.  On energy gap phenomena of the Whitney sphere and related problems , 2020, 2006.08191.

[11]  C. Xia On the minimal submanifolds in ${\bf C}{\rm P}^m(c)$ and $S^N(1)$ , 1992 .

[12]  J. H. Michael,et al.  Sobolev and mean‐value inequalities on generalized submanifolds of Rn , 1973 .

[13]  F. Urbano,et al.  LAGRANGIAN SURFACES IN THE COMPLEX EUCLIDEAN PLANE WITH CONFORMAL MASLOV FORM , 1993 .

[14]  K. Shiohama,et al.  The Topoligical Sphere Theorem for Complete Submanifolds , 1997, Compositio Mathematica.