Schnorr trivial reals A construction

A real is Martin-Löf (Schnorr) random if it does not belong to any effectively presented null $${\Sigma^0_1}$$ (recursive) class of reals. Although these randomness notions are very closely related, the set of Turing degrees containing reals that are K-trivial has very different properties from the set of Turing degrees that are Schnorr trivial. Nies proved in (Adv Math 197(1):274–305, 2005) that all K-trivial reals are low. In this paper, we prove that if $${{\bf h'} \geq_T {\bf 0''}}$$ , then h contains a Schnorr trivial real. Since this concept appears to separate computational complexity from computational strength, it suggests that Schnorr trivial reals should be considered in a structure other than the Turing degrees.

[1]  Johanna N. Y. Franklin Hyperimmune-free degrees and Schnorr triviality , 2008, Journal of Symbolic Logic.

[2]  André Nies,et al.  Trivial Reals , 2002, CCA.

[3]  Claus-Peter Schnorr,et al.  A unified approach to the definition of random sequences , 1971, Mathematical systems theory.

[4]  Donald A. Martin,et al.  The Degrees of Hyperimmune Sets , 1968 .

[5]  Rodney G. Downey,et al.  Schnorr Randomness , 2002, Electron. Notes Theor. Comput. Sci..

[6]  Bjørn Kjos-Hanssen,et al.  Lowness for the Class of Schnorr Random Reals , 2005, SIAM J. Comput..

[7]  Sebastiaan Terwijn,et al.  Computational randomness and lowness* , 2001, Journal of Symbolic Logic.

[8]  Marcus Hutter,et al.  Algorithmic Information Theory , 1977, IBM J. Res. Dev..

[9]  André Nies,et al.  Calibrating Randomness , 2006, Bull. Symb. Log..

[10]  Per Martin-Löf,et al.  The Definition of Random Sequences , 1966, Inf. Control..

[11]  André Nies,et al.  Randomness, relativization and Turing degrees , 2005, J. Symb. Log..

[12]  A. Kucera Measure, Π10-classes and complete extensions of PA , 1985 .

[13]  A. Nies Lowness properties and randomness , 2005 .

[14]  Gregory J. Chaitin,et al.  A recent technical report , 1974, SIGA.

[15]  Rodney G. Downey,et al.  On Schnorr and computable randomness, martingales, and machines , 2004, Math. Log. Q..