Polynomial time approximation schemes for Euclidean TSP and other geometric problems

We present a polynomial time approximation scheme for Euclidean TSP in /spl Rfr//sup 2/. Given any n nodes in the plane and /spl epsiv/>0, the scheme finds a (1+/spl epsiv/)-approximation to the optimum traveling salesman tour in time n/sup 0(1//spl epsiv/)/. When the nodes are in /spl Rfr//sup d/, the running time increases to n(O/spl tilde/(log/sup d-2/n)//spl epsiv//sup d-1/) The previous best approximation algorithm for the problem (due to Christofides (1976)) achieves a 3/2-approximation in polynomial time. We also give similar approximation schemes for a host of other Euclidean problems, including Steiner Tree, k-TSP, Minimum degree-k, spanning tree, k-MST, etc. (This list may get longer; our techniques are fairly general.) The previous best approximation algorithms for all these problems achieved a constant-factor approximation. All our algorithms also work, with almost no modification, when distance is measured using any geometric norm (such as l/sub p/ for p/spl ges/1 or other Minkowski norms).

[1]  Shen Lin Computer solutions of the traveling salesman problem , 1965 .

[2]  Ronald L. Graham,et al.  Bounds for certain multiprocessing anomalies , 1966 .

[3]  H. Pollak,et al.  Steiner Minimal Trees , 1968 .

[4]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[5]  David S. Johnson,et al.  Approximation algorithms for combinatorial problems , 1973, STOC.

[6]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[7]  Teofilo F. Gonzalez,et al.  P-Complete Approximation Problems , 1976, J. ACM.

[8]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[9]  Richard M. Karp,et al.  Probabilistic Analysis of Partitioning Algorithms for the Traveling-Salesman Problem in the Plane , 1977, Math. Oper. Res..

[10]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[11]  Richard M. Karp,et al.  An efficient approximation scheme for the one-dimensional bin-packing problem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[12]  Mihalis Yannakakis,et al.  The complexity of facets (and some facets of complexity) , 1982, STOC '82.

[13]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[14]  Mihalis Yannakakis,et al.  How easy is local search? , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[15]  Mark W. Krentel,et al.  Structure in locally optimal solutions , 1989, 30th Annual Symposium on Foundations of Computer Science.

[16]  László Lovász,et al.  Approximating clique is almost NP-complete , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[17]  Mihalis Yannakakis,et al.  Optimization, approximation, and complexity classes , 1991, STOC '88.

[18]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[19]  Christos H. Papadimitriou,et al.  The Complexity of the Lin-Kernighan Heuristic for the Traveling Salesman Problem , 1992, SIAM J. Comput..

[20]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[21]  Howard J. Karloff,et al.  New results on the old k-opt algorithm for the TSP , 1994, SODA '94.

[22]  Samir Khuller,et al.  Low degree spanning trees of small weight , 1994, STOC '94.

[23]  David Applegate,et al.  Finding Cuts in the TSP (A preliminary report) , 1995 .

[24]  Santosh S. Vempala,et al.  A constant-factor approximation for the k-MST problem in the plane , 1995, STOC '95.

[25]  Christos H. Papadimitriou,et al.  An approximation scheme for planar graph TSP , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[26]  D. Eppstein,et al.  Approximation algorithms for geometric problems , 1996 .

[27]  Samir Khuller,et al.  Low-Degree Spanning Trees of Small Weight , 1996, SIAM J. Comput..

[28]  Joseph S. B. Mitchell,et al.  Guillotine subdivisions approximate polygonal subdivisions: a simple new method for the geometric k-MST problem , 1996, SODA '96.

[29]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[30]  Sanjeev Arora,et al.  Probabilistic checking of proofs: a new characterization of NP , 1998, JACM.