Evolving evolutionary algorithms using evolutionary algorithms

A new model for automatic generation of Evolutionary Algorithms (EAs) by evolutionary means is proposed in this paper. The model is based on a simple Genetic Algorithm (GA). Every GA chromosome encodes an EA, which is used for solving a particular problem. Several Evolutionary Algorithms for function optimization are evolved by using the considered model. Numerical experiments show that the evolved Evolutionary Algorithms perform similarly and sometimes even better than standard approaches for several well-known benchmarking problems.

[1]  Brian J. Ross,et al.  Searching for Search Algorithms: Experiments in Meta-search , 2002 .

[2]  Astro Teller,et al.  Evolving programmers: the co-evolution of intelligent recombination operators , 1996 .

[3]  Peter J. Angeline,et al.  Adaptive and Self-adaptive Evolutionary Computations , 1995 .

[4]  Lee Spector,et al.  Genetic Programming and Autoconstructive Evolution with the Push Programming Language , 2002, Genetic Programming and Evolvable Machines.

[5]  B. Freisleben,et al.  Genetic local search for the TSP: new results , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[6]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[7]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[8]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Multi Expression Programming , 2003, ECAL.

[9]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[10]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[11]  Bruce Edmonds,et al.  Meta-Genetic Programming: Co-evolving the Operators of Variation , 2001 .

[12]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms Using Linear Genetic Programming , 2005, Evolutionary Computation.

[13]  Mihai Oltean,et al.  Evolving Evolutionary Algorithms with Patterns , 2007, Soft Comput..

[14]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[15]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[16]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[17]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[18]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[19]  Wolfgang Banzhaf,et al.  A comparison of linear genetic programming and neural networks in medical data mining , 2001, IEEE Trans. Evol. Comput..

[20]  Christopher R. Stephens,et al.  Self-Adaptation in Evolving Systems , 1997, Artificial Life.

[21]  Gilbert Syswerda,et al.  A Study of Reproduction in Generational and Steady State Genetic Algorithms , 1990, FOGA.

[22]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .