Distorted Mix Method for constructing copulas with tail dependence

Abstract This paper introduces a method for constructing copula functions by combining the ideas of distortion and convex sum, named Distorted Mix Method. The method mixes different copulas with distorted margins to construct new copula functions, and it enables us to model the dependence structure of risks by handling the central and tail parts separately. By applying the method we can modify the tail dependence of a given copula to any desired level measured by tail dependence function and tail dependence coefficients of marginal distributions. As an application, a tight bound for asymptotic Value-at-Risk of order statistics is obtained by using the method. An empirical study shows that copulas constructed by this method fit the empirical data of SPX 500 Index and FTSE 100 Index very well in both central and tail parts.

[1]  Xiaohong Chen,et al.  Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification , 2006 .

[2]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[3]  F. Longin,et al.  Extreme Correlation of International Equity Markets , 2000 .

[4]  P. Embrechts,et al.  Quantitative Risk Management: Concepts, Techniques, and Tools , 2005 .

[5]  R. Nelsen An Introduction to Copulas , 1998 .

[6]  Christian Genest,et al.  On the multivariate probability integral transformation , 2001 .

[7]  M. Yaari The Dual Theory of Choice under Risk , 1987 .

[8]  David X. Li On Default Correlation , 2000 .

[9]  Matthias Fischer,et al.  Constructing and generalizing given multivariate copulas: a unifying approach , 2012 .

[10]  O. Gascuel,et al.  Bounds on distribution functions of order statistics for dependent variates , 1992 .

[11]  Eckhard Liebscher,et al.  Construction of asymmetric multivariate copulas , 2008 .

[12]  Bounds for order statistics based on dependent variables with given nonidentical distributions , 1995 .

[13]  Alan G. White,et al.  Valuation of a CDO and an n-th to Default CDS Without Monte Carlo Simulation , 2004 .

[14]  Radko Mesiar,et al.  Transformations of copulas , 2005, Kybernetika.

[15]  Paul Embrechts,et al.  The Devil is in the Tails: Actuarial Mathematics and the Subprime Mortgage Crisis , 2010, ASTIN Bulletin.

[16]  Patricia M. Morillas,et al.  A method to obtain new copulas from a given one , 2005 .

[17]  Fabrizio Durante,et al.  Copula and semicopula transforms , 2006, Int. J. Math. Math. Sci..

[18]  Shaun S. Wang Premium Calculation by Transforming the Layer Premium Density , 1996, ASTIN Bulletin.

[19]  Fabrizio Durante,et al.  Distorted Copulas: Constructions and Tail Dependence , 2010 .

[20]  H. Joe,et al.  Tail comonotonicity: Properties, constructions, and asymptotic additivity of risk measures , 2012 .

[21]  Michel Denuit,et al.  Actuarial Theory for Dependent Risks: Measures, Orders and Models , 2005 .

[22]  H. Joe Multivariate models and dependence concepts , 1998 .

[23]  C. Klüppelberg,et al.  Semi‐Parametric Models for the Multivariate Tail Dependence Function – the Asymptotically Dependent Case , 2008 .

[24]  Aristidis K. Nikoloulopoulos,et al.  Tail dependence functions and vine copulas , 2010, J. Multivar. Anal..