A new approach to determining asteroid masses from planetary range measurements

Abstract We describe a new approach to estimate asteroid masses from planetary range measurements. The approach significantly simplifies the process of parameter estimation and allows an effective control of systematic errors introduced by the omission of asteroids from the dynamical model. All asteroid masses are adjusted individually thus avoiding the usual distinction between masses considered individually and masses based on densities within the C, S and M taxonomic classes. Regularization is achieved by accounting, on each mass, for a prior uncertainty determined from available estimations of asteroid diameters and densities. The new approach is used to fit the asteroid model of the JPL planetary ephemeris to Mars range data. The adjusted planetary solutions exhibit similar extrapolation capacity as previous releases of the JPL ephemeris. Up to 27 asteroid masses are determined to better than 35%. The masses agree well with estimates obtained independently by other authors. The determined masses are also robust with respect to cross-validation on a dataset with a shorter time-span and with respect to a different selection of asteroids in the model.

[1]  Ken Fox,et al.  Numerical integration of the equations of motion of celestial mechanics , 1984 .

[2]  Per Christian Hansen 5. Direct Regularization Methods , 1998 .

[3]  James G. Williams,et al.  Determining asteroid masses from perturbations on Mars , 1984 .

[4]  A. Fienga,et al.  INPOP06: a new numerical planetary ephemeris , 2008 .

[5]  A. Fienga,et al.  Determination of asteroid masses from their close encounters with Mars , 2010 .

[6]  Charles L. Lawson,et al.  Solving least squares problems , 1976, Classics in applied mathematics.

[7]  A. Fienga,et al.  INPOP08, a 4-D planetary ephemeris: from asteroid and time-scale computations to ESA Mars Express and Venus Express contributions , 2009, 0906.2860.

[8]  Stephan D. Price,et al.  The Supplemental IRAS Minor Planet Survey , 2002 .

[9]  J. Blommaert,et al.  65 Cybele in the thermal infrared: Multiple observations and thermophysical analysis , 2004, astro-ph/0401458.

[10]  T N Titus,et al.  Dawn at Vesta: Testing the Protoplanetary Paradigm , 2012, Science.

[11]  E. V. Pitjeva,et al.  Hidden Mass in the Asteroid Belt , 2002 .

[12]  A. Fienga,et al.  The INPOP10a planetary ephemeris and its applications in fundamental physics , 2011 .

[13]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[14]  J. Jackson Note on the Numerical Integration of $\frac{{d}^{2}x}{{dt}^{2}}=f(x,t)$ , 1924 .

[15]  W. Folkner,et al.  The Planetary and Lunar Ephemeris DE 421 , 2009 .

[16]  E. Pitjeva High-Precision Ephemerides of Planets—EPM and Determination of Some Astronomical Constants , 2005 .

[17]  Benoit Carry,et al.  Density of asteroids , 2012, 1203.4336.

[18]  M. Polińska,et al.  Figure of the double Asteroid 90 Antiope from adaptive optics and lightcurve observations , 2007 .

[19]  Steven R. Chesley,et al.  ASTROMETRIC MASSES OF 26 ASTEROIDS AND OBSERVATIONS ON ASTEROID POROSITY , 2011 .

[20]  J. Anderson,et al.  Experimental test of the variability of G using Viking lander ranging data , 1983 .

[21]  E. V. Pitjeva,et al.  EPM ephemerides and relativity , 2009, Proceedings of the International Astronomical Union.

[22]  E. Standish,et al.  A determination of the masses of Ceres, Pallas, and Vesta from their perturbations upon the orbit of Mars , 1989 .

[23]  Alan W. Harris,et al.  Asteroids in the Thermal Infrared , 2002 .

[24]  A. Fienga,et al.  Electron density distribution and solar plasma correction of radio signals using MGS, MEX, and VEX spacecraft navigation data and its application to planetary ephemerides , 2012, 1206.5667.

[25]  Lance A. M. Benner,et al.  A radar survey of M- and X-class asteroids , 2008 .

[26]  A. Fienga,et al.  A ring as a model of the main belt in planetary ephemerides , 2010, 1004.3119.

[27]  David Trilling,et al.  Physical Properties of Kuiper Belt and Centaur Objects: Constraints from the Spitzer Space Telescope , 2007 .

[28]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[29]  T. B. Spahr,et al.  MAIN BELT ASTEROIDS WITH WISE/NEOWISE. I. PRELIMINARY ALBEDOS AND DIAMETERS , 2011, 1109.4096.

[30]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[31]  M. Barucci,et al.  Visible-Wavelength Spectroscopy of Asteroids , 2002 .

[32]  B. Numerov,et al.  Note on the numerical integration of d2x/dt2 = f(x, t) , 1927 .

[33]  Petr Kuchynka ÉTUDE DES PERTURBATIONS INDUITES PAR LES ASTÉROÏDES SUR LES MOUVEMENTS DES PLANÈTES ET DES SONDES SPATIALES AUTOUR DU POINT DE LAGRANGE L2 , 2010 .