Monochromatic stars in rainbow K3-free and S3+-free colorings

Abstract Given two graphs G and H , we consider the Ramsey-type problem of finding the minimum integer n (denoted by e g r k ( G : H ) ) such that n 2 ≥ k and for every N ≥ n , every rainbow G -free k -coloring (using exactly k colors) of the complete graph K N contains a monochromatic copy of H . In this paper, we determine e g r k ( K 3 : K 1 , t ) for all integers t ≥ 1 and k ≥ 3 completely. Let S 3 + be the unique graph on four vertices consisting of a triangle and a pendant edge. We characterize e g r k ( S 3 + : K 1 , t ) for all integers t ≥ 1 and k ≥ 3 t − 2 . We also determine e g r k ( S 3 + : K 1 , t ) for integers 1 ≤ t ≤ 5 and k ≥ 4 .

[1]  Hanno Lefmann,et al.  On graphs with a large number of edge-colorings avoiding a rainbow triangle , 2017, Eur. J. Comb..

[2]  Shinya Fujita,et al.  Rainbow Generalizations of Ramsey Theory: A Survey , 2010, Graphs Comb..

[3]  Izolda Gorgol Rainbow Numbers for Cycles with Pendant Edges , 2008, Graphs Comb..

[4]  T. Gallai Transitiv orientierbare Graphen , 1967 .

[5]  János Pach,et al.  The Erdős-Hajnal conjecture for rainbow triangles , 2015, J. Comb. Theory, Ser. B.

[6]  Dylan Bruce,et al.  Gallai-Ramsey numbers of C7 with multiple colors , 2017, Discret. Math..

[7]  Haibo Wu,et al.  All partitions have small parts - Gallai-Ramsey numbers of bipartite graphs , 2017, Discret. Appl. Math..

[8]  Yusheng Li,et al.  Gallai–Ramsey Numbers of Odd Cycles and Complete Bipartite Graphs , 2018, Graphs Comb..

[9]  Zsolt Adam Wagner Large Subgraphs in Rainbow‐Triangle Free Colorings , 2016, J. Graph Theory.

[10]  Martin Hall,et al.  Improved Upper Bounds for Gallai–Ramsey Numbers of Paths and Cycles , 2014, J. Graph Theory.

[11]  Gábor N. Sárközy,et al.  Ramsey-type results for Gallai colorings , 2010 .

[12]  Yongtang Shi,et al.  Gallai‐Ramsey number for K 4 , 2019, J. Graph Theory.

[13]  Shinya Fujita,et al.  Extensions of Gallai–Ramsey results , 2012, J. Graph Theory.

[14]  Shinya Fujita,et al.  Gallai-Ramsey numbers for cycles , 2011, Discret. Math..

[15]  Xiangxiang Liu,et al.  Complete graphs and complete bipartite graphs without rainbow path , 2019, Discret. Math..

[16]  András Gyárfás,et al.  Edge colorings of complete graphs without tricolored triangles , 2004 .

[17]  Colton Magnant,et al.  Rainbow Generalizations of Ramsey Theory - A Dynamic Survey , 2014 .

[18]  S. Radziszowski Small Ramsey Numbers , 2011 .