A review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications

The field of visible light communications (VLC) has gained significant interest over the last decade, in both fibre and free-space embodiments. In fibre systems, the availability of low cost plastic optical fibre (POF) that is compatible with visible data communications has been a key enabler. In free-space applications, the availability of hundreds of THz of the unregulated spectrum makes VLC attractive for wireless communications. This paper provides an overview of the recent developments in VLC systems based on gallium nitride (GaN) light-emitting diodes (LEDs), covering aspects from sources to systems. The state-of-the-art technology enabling bandwidth of GaN LEDs in the range of >400 MHz is explored. Furthermore, advances in key technologies, including advanced modulation, equalisation, and multiplexing that have enabled free-space VLC data rates beyond 10 Gb/s are also outlined.

[1]  Navin Kumar Visible Light Communication Based Traffic Information Broadcasting Systems , 2014 .

[2]  H. Haas,et al.  LED nonlinearity mitigation techniques in optical wireless OFDM communication systems , 2012, IEEE/OSA Journal of Optical Communications and Networking.

[3]  Weihua Pei,et al.  682 Mbit/s phosphorescent white LED visible light communications utilizing analog equalized 16QAM-OFDM modulation without blue filter , 2015 .

[4]  Nan Chi,et al.  1.6 Gbit/s phosphorescent white LED based VLC transmission using a cascaded pre-equalization circuit and a differential outputs PIN receiver. , 2015, Optics express.

[5]  Nan Chi,et al.  Advancing the capacity of phosphorescent white LED based visible light communication network , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[6]  D. O'Brien,et al.  A Gigabit/s Indoor Wireless Transmission Using MIMO-OFDM Visible-Light Communications , 2013, IEEE Photonics Technology Letters.

[7]  H. Haas,et al.  Demonstration of the Merit and Limitation of Generalised Space Shift Keying for Indoor Visible Light Communications , 2014, Journal of Lightwave Technology.

[8]  J. Piprek Efficiency droop in nitride‐based light‐emitting diodes , 2010 .

[9]  Chung Ghiu Lee,et al.  Visible Light Communication , 2011 .

[10]  Nan Chi,et al.  Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS. , 2014, Optics express.

[11]  Myungsik Yoo,et al.  Performance Analysis of Visible Light Communication Using CMOS Sensors , 2016, Sensors.

[12]  Steve Hranilovic,et al.  Practical OFDM signalling for visible light communications using spatial summation , 2014, 2014 27th Biennial Symposium on Communications (QBSC).

[13]  J. Siuzdak,et al.  Compensation of a VLC Phosphorescent White LED Nonlinearity by Means of Volterra DFE , 2013, IEEE Photonics Technology Letters.

[14]  Harald Haas,et al.  Experimental Results on the Performance of Optical Spatial Modulation Systems , 2012, 2012 IEEE Vehicular Technology Conference (VTC Fall).

[15]  Zhe Chen,et al.  Integrated multiple-input multiple-output visible light communications systems: recent progress and results , 2015, Photonics West - Optoelectronic Materials and Devices.

[16]  Yi Hong,et al.  Flip-OFDM for Unipolar Communication Systems , 2011, IEEE Transactions on Communications.

[17]  Jeffrey B. Carruthers,et al.  Wireless Infrared Communications , 2003 .

[18]  M. Dawson,et al.  1.5 Gbit/s Multi-Channel Visible Light Communications Using CMOS-Controlled GaN-Based LEDs , 2013, Journal of Lightwave Technology.

[19]  Harald Haas,et al.  Non-linearity effects and predistortion in optical OFDM wireless transmission using LEDs , 2009, Int. J. Ultra Wideband Commun. Syst..

[20]  M. Dawson,et al.  Visible-Light Communications Using a CMOS-Controlled Micro-Light- Emitting-Diode Array , 2012, Journal of Lightwave Technology.

[21]  Robert Weigel,et al.  Edge-position modulation for high-speed wireless infrared communications , 2003 .

[22]  Junyi Li,et al.  Visible light communication: opportunities, challenges and the path to market , 2013, IEEE Communications Magazine.

[23]  Nan Chi,et al.  Real-time bi-directional visible light communication system utilizing a phosphor-based LED and RGB LED , 2014, 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP).

[24]  Giulio Cossu,et al.  Gigabit-class optical wireless communication system at indoor distances (1.5 ÷ 4 m). , 2015, Optics express.

[25]  P. Chu,et al.  Light-emitting diodes enhanced by localized surface plasmon resonance , 2011, Nanoscale research letters.

[26]  Gong-Ru Lin,et al.  High-Speed GaN-Based Green Light-Emitting Diodes With Partially n-Doped Active Layers and Current-Confined Apertures , 2008, IEEE Electron Device Letters.

[27]  Willy Anugrah Cahyadi,et al.  Experimental Demonstration of VLC-Based Vehicle-to-Vehicle Communications Under Fog Conditions , 2015, IEEE Photonics Journal.

[28]  Harald Haas,et al.  A Multigigabit per Second Integrated Multiple-Input Multiple-Output VLC Demonstrator , 2017, Journal of Lightwave Technology.

[29]  Zabih Ghassemlooy,et al.  Optical Wireless Communications: System and Channel Modelling with MATLAB® , 2012 .

[30]  Stefan Schmid,et al.  (In)visible light communication: combining illumination and communication , 2014, SIGGRAPH '14.

[31]  J. Armstrong,et al.  Analysis of an Optical Wireless Receiver Using a Hemispherical Lens With Application in MIMO Visible Light Communications , 2013, Journal of Lightwave Technology.

[32]  Martin D. Dawson,et al.  Hybrid GaN LED with capillary-bonded II–VI MQW color-converting membrane for visible light communications , 2015 .

[33]  Dong-Fang Zhang,et al.  Multi-LED Phase-Shifted OOK Modulation Based Visible Light Communication Systems , 2013, IEEE Photonics Technology Letters.

[34]  Zabih Ghassemlooy,et al.  Standards for indoor Optical Wireless Communications , 2015, IEEE Communications Magazine.

[35]  Dominic O'Brien Multi-input multi-output (MIMO) indoor optical wireless communications , 2009, 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers.

[36]  Robert F. H. Fischer,et al.  Signal processing in decision-feedback equalization of intersymbol-interference and multiple-input/multiple-output channels: a unified view , 2003, Signal Process..

[37]  Dominic O'Brien,et al.  A Study of Illumination and Communication using Organic Light Emitting Diodes , 2013, Journal of Lightwave Technology.

[38]  Steve Hranilovic,et al.  Design and Implementation of Color-Shift Keying for Visible Light Communications , 2014, Journal of Lightwave Technology.

[39]  Beongku An,et al.  Demonstration of Low-Complexity LED-to-LED Two-Way Visible Light Communication System , 2016, 2016 International Symposium on Computer, Consumer and Control (IS3C).

[40]  G. Cossu,et al.  Experimental demonstration of high speed underwater visible light communications , 2013, 2013 2nd International Workshop on Optical Wireless Communications (IWOW).

[41]  Pingyi Fan,et al.  Constellation design for PAM in presence of imperfect Doppler frequency shift estimation , 2013, 2013 International Conference on Wireless Communications and Signal Processing.

[42]  O. Ziemann,et al.  Very high-speed GaN-based cyan light emitting diode on patterned sapphire substrate for 1 Gbps plastic optical fiber communication , 2012, OFC/NFOEC.

[43]  Carrick Detweiler,et al.  AquaOptical: A lightweight device for high-rate long-range underwater point-to-point communication , 2009, OCEANS 2009.

[44]  Lianxi Zheng,et al.  Cubic-phase GaN light-emitting diodes , 1999 .

[45]  Kunyi Cai,et al.  SM/SPPM Aided Multiuser Precoded Visible Light Communication Systems , 2016, IEEE Photonics Journal.

[46]  N. Chi,et al.  Experimental demonstration of 10 Gb/s multi-level carrier-less amplitude and phase modulation for short range optical communication systems. , 2013, Optics express.

[47]  Luis Nero Alves,et al.  Spatial ODAC performance for indoor environment , 2014, 2014 3rd International Workshop in Optical Wireless Communications (IWOW).

[48]  Nan Chi,et al.  Gigabit polarization division multiplexing in visible light communication. , 2014, Optics letters.

[49]  A. Waag,et al.  GaN based nanorods for solid state lighting , 2012 .

[50]  Hongfei Liu,et al.  MBE growth and Raman studies of cubic and hexagonal GaN films on (001)-oriented GaAs substrates , 2000 .

[51]  Harald Haas,et al.  Error Performance of Generalised Space Shift Keying for Indoor Visible Light Communications , 2013, IEEE Transactions on Communications.

[52]  Sujan Rajbhandari,et al.  Novel fast color-converter for visible light communication using a blend of conjugated polymers , 2015 .

[53]  Nan Chi,et al.  Integrated 10 Gb/s multilevel multiband passive optical network and 500 Mb/s indoor visible light communication system based on Nyquist single carrier frequency domain equalization modulation. , 2014, Optics letters.

[54]  K. Nosu,et al.  MPPM: a method for improving the band-utilization efficiency in optical PPM , 1989 .

[55]  Joseph M. Kahn,et al.  Experimental characterization of non-directed indoor infrared channels , 1995, IEEE Trans. Commun..

[56]  Harald Haas,et al.  Using a CMOS camera sensor for visible light communication , 2012, 2012 IEEE Globecom Workshops.

[57]  Clay Elliott,et al.  Energy Savings Forecast of Solid-State Lighting in General Illumination Applications , 2019 .

[58]  Yee Hong Leung,et al.  Digital filters for carrierless amplitude and phase receivers , 2001, Proceedings of IEEE Region 10 International Conference on Electrical and Electronic Technology. TENCON 2001 (Cat. No.01CH37239).

[59]  Mohammad Noshad,et al.  Application of Expurgated PPM to Indoor Visible Light Communications—Part I: Single-User Systems , 2013, Journal of Lightwave Technology.

[60]  Jeffrey Y. Tsao,et al.  Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting , 2013 .

[61]  Mohsen Kavehrad,et al.  Optical wireless applications: a solution to ease the wireless airwaves spectrum crunch , 2013, Photonics West - Optoelectronic Materials and Devices.

[62]  Zabih Ghassemlooy,et al.  Wavelet-Neural Network VLC Receiver in the Presence of Artificial Light Interference , 2013, IEEE Photonics Technology Letters.

[63]  F. Scholz,et al.  Semipolar GaN grown on foreign substrates: a review , 2012 .

[64]  Stefan Videv,et al.  Towards a 100 Gb/s visible light wireless access network. , 2015, Optics express.

[65]  K. Habel,et al.  125 Mbit/s over 5 m wireless distance by use of OOK-Modulated phosphorescent white LEDs , 2009, 2009 35th European Conference on Optical Communication.

[66]  Sujan Rajbhandari,et al.  Effectiveness of blue-filtering in WLED based indoor Visible light communication , 2014, 2014 3rd International Workshop in Optical Wireless Communications (IWOW).

[67]  S. Dimitrov,et al.  Signal Shaping and Modulation for Optical Wireless Communication , 2012, Journal of Lightwave Technology.

[68]  K. Habel,et al.  803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary , 2011, 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference.

[69]  Dominic C. O'Brien,et al.  Visible light communication using laser diode based remote phosphor technique , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[70]  Jason Gao,et al.  A new adaptive equalizer for carrierless amplitude and phase (CAP) receivers , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[71]  Yuefeng Ji,et al.  Hybrid time-frequency domain equalization for LED nonlinearity mitigation in OFDM-based VLC systems. , 2015, Optics express.

[72]  John G. Proakis,et al.  Digital Communications , 1983 .

[73]  Erdan Gu,et al.  Modulation bandwidth studies of recombination processes in blue and green InGaN quantum well micro-light-emitting diodes , 2013 .

[74]  Prasanna Kannan,et al.  Propagation modelling for indoor optical wireless communications using fast multi-receiver channel estimation , 2003 .

[75]  David Tse,et al.  Fundamentals of Wireless Communication , 2005 .

[76]  D. O’brien,et al.  A 200 Mb/s VLC demonstration with a SPAD based receiver , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[77]  H. Qian,et al.  Adaptive Postdistortion for Nonlinear LEDs in Visible Light Communications , 2014, IEEE Photonics Journal.

[78]  Zabih Ghassemlooy,et al.  Visible Light Communications: 170 Mb/s Using an Artificial Neural Network Equalizer in a Low Bandwidth White Light Configuration , 2014, Journal of Lightwave Technology.

[79]  Ying-Bing Jiang,et al.  Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100) , 2013 .

[80]  Jiun-Yu Sung,et al.  Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications? , 2014, Optics express.

[81]  Nan Chi,et al.  Enhanced performance of single-input multiple-output visible light communication system utilizing space diversity technology , 2015 .

[82]  Pallab Bhattacharya,et al.  Monolithic phosphor-free InGaN/GaN quantum dot wavelength converter white light emitting diodes , 2014 .

[83]  Takashi Mukai,et al.  Surface plasmon enhanced spontaneous emission rate of InGaN∕GaN quantum wells probed by time-resolved photoluminescence spectroscopy , 2005 .

[84]  Evgeny Vanin,et al.  Performance evaluation of intensity modulated optical OFDM system with digital baseband distortion. , 2011, Optics express.

[85]  Hongda Chen,et al.  A 550 Mbit/s real-time visible light communication system based on phosphorescent white light LED for practical high-speed low-complexity application. , 2014, Optics express.

[86]  Dina Katabi,et al.  PixNet: interference-free wireless links using LCD-camera pairs , 2010, MobiCom '10.

[87]  Harald Haas,et al.  What is LiFi? , 2015, 2015 European Conference on Optical Communication (ECOC).

[88]  Stefan Schmid,et al.  Connecting networks of toys and smartphones with visible light communication , 2014, IEEE Communications Magazine.

[89]  E. Leitgeb,et al.  A 100 Mb/s visible light communications system using a linear adaptive equalizer , 2014, 2014 19th European Conference on Networks and Optical Communications - (NOC).

[90]  K. Langer,et al.  White Light Wireless Transmission at 200${+}$ Mb/s Net Data Rate by Use of Discrete-Multitone Modulation , 2009, IEEE Photonics Technology Letters.

[91]  J.-W. Shi,et al.  The improvement in modulation speed of GaN-based Green light-emitting diode (LED) by use of n-type barrier doping for plastic optical fiber (POF) communication , 2006, IEEE Photonics Technology Letters.

[92]  G Ntogari,et al.  Combining Illumination Dimming Based on Pulse-Width Modulation With Visible-Light Communications Based on Discrete Multitone , 2011, IEEE/OSA Journal of Optical Communications and Networking.

[93]  Beiju Huang,et al.  200 Mb/s visible optical wireless transmission based on NRZ-OOK modulation of phosphorescent white LED and a pre-emphasis circuit , 2014 .

[94]  D. O’brien,et al.  100-Mb/s NRZ Visible Light Communications Using a Postequalized White LED , 2009, IEEE Photonics Technology Letters.

[95]  Zabih Ghassemlooy,et al.  Experimental Demonstration of 50-Mb/s Visible Light Communications Using 4 $\,\times\,$ 4 MIMO , 2014, IEEE Photonics Technology Letters.

[96]  John R. Barry,et al.  Performance of multiple pulse position modulation on multipath channels , 1996 .

[97]  C. Yeh,et al.  Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance. , 2014, Optics express.

[98]  Roland Haitz,et al.  Solid‐state lighting: ‘The case’ 10 years after and future prospects , 2011 .

[99]  Mohammad Noshad,et al.  Application of Expurgated PPM to Indoor Visible Light Communications—Part II: Access Networks , 2014, Journal of Lightwave Technology.

[100]  Frans M. J. Willems,et al.  Optimum diversity combining techniques for visible light communication systems , 2014, 2014 IEEE Globecom Workshops (GC Wkshps).

[101]  S. Sinanovic,et al.  Complete Modeling of Nonlinear Distortion in OFDM-Based Optical Wireless Communication , 2013, Journal of Lightwave Technology.

[102]  J F Li,et al.  Superposed pulse amplitude modulation for visible light communication. , 2013, Optics express.

[103]  R. V. Penty,et al.  Performance and Power Dissipation Comparisons Between 28 Gb/s NRZ, PAM, CAP and Optical OFDM Systems for Data Communication Applications , 2012, Journal of Lightwave Technology.

[104]  Ioannis Papakonstantinou,et al.  Flexible and fluorophore-doped luminescent solar concentrators based on polydimethylsiloxane. , 2016, Optics letters.

[105]  Zabih Ghassemlooy,et al.  Visible light communications using organic light emitting diodes , 2013, IEEE Communications Magazine.

[106]  Taeil Jung,et al.  Novel Epitaxial Nanostructures for the Improvement of InGaN LEDs Efficiency , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[107]  Li Tao,et al.  Enhanced Performance of a High-Speed WDM CAP64 VLC System Employing Volterra Series-Based Nonlinear Equalizer , 2015, IEEE Photonics Journal.

[108]  K. Habel,et al.  1.25 Gbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[109]  Gang Wang,et al.  Size- and current-density-controlled tunable wavelength in gan-based leds for potential dense wavelength-division multiplexing application , 2015, IEEE Wireless Communications.

[110]  M. Dawson,et al.  High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array , 2010, IEEE Photonics Technology Letters.

[111]  K. Habel,et al.  230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs , 2010, 2010 Conference on Optical Fiber Communication (OFC/NFOEC), collocated National Fiber Optic Engineers Conference.

[112]  Mohsen Kavehrad,et al.  Asynchronous indoor positioning system based on visible light communications , 2014 .

[113]  A. L. Bradley,et al.  GaN resonant cavity light-emitting diodes for plastic optical fiber applications , 2004, IEEE Photonics Technology Letters.

[114]  Yeong Min Jang,et al.  Survey on optical camera communications: challenges and opportunities , 2015 .

[115]  Mohsen Kavehrad,et al.  Indoor positioning algorithm using light-emitting diode visible light communications , 2012 .

[116]  Seong-Ju Park,et al.  Enhanced Optical Power of InGaN/GaN Light-Emitting Diode by AlGaN Interlayer and Electron Blocking Layer , 2012, IEEE Photonics Technology Letters.

[117]  Hsin-Mu Tsai,et al.  Modeling vehicle-to-vehicle visible light communication link duration with empirical data , 2013, 2013 IEEE Globecom Workshops (GC Wkshps).

[118]  Simon Haykin,et al.  Neural network-based receiver for wireless communications , 1999 .

[119]  Andrew Kerans,et al.  Pricing of spectrum based on physical criteria , 2011, 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN).

[120]  Ahmad Helmi Azhar,et al.  Experimental comparisons of optical OFDM approaches in visible light communications , 2013, 2013 IEEE Globecom Workshops (GC Wkshps).

[121]  Thomas Q. Wang,et al.  Performance of Optical Receivers Using Photodetectors With Different Fields of View in a MIMO ACO-OFDM System , 2015, Journal of Lightwave Technology.

[122]  Joachim Walewski,et al.  Visible Light Communications , 2009 .

[123]  Hui Nie,et al.  High performance, low-cost PIN, APD receivers in fiber optical networks and FTTx applications , 2005 .

[124]  Jinghua Teng,et al.  Fast Electrical Modulation in a Plasmonic‐Enhanced, V‐Pit‐Textured, Light‐Emitting Diode , 2015 .

[125]  Dominic C. O'Brien,et al.  Broadcasting over Photon-Counting Channels via Multiresolution PPM: Implementation and Experimental Results , 2012, IEEE Communications Letters.

[126]  Jiaheng Wang,et al.  Performance analysis of the imaging receivers using a hemispherical lens for Visible Light Communications , 2013, 2013 International Conference on Wireless Communications and Signal Processing.

[127]  J. Bowers,et al.  GaN-Based Miniaturized Cyan Light-Emitting Diodes on a Patterned Sapphire Substrate With Improved Fiber Coupling for Very High-Speed Plastic Optical Fiber Communication , 2012, IEEE Photonics Journal.

[128]  Shien-Kuei Liaw,et al.  RGB LEDs visible light communications based on equalized receiver with broadband optical filters , 2015, 2015 International Workshop on Fiber Optics in Access Network (FOAN).

[129]  Thomas D. C. Little,et al.  Performance of optical spatial modulation and spatial multiplexing with imaging receiver , 2014, 2014 IEEE Wireless Communications and Networking Conference (WCNC).

[130]  Edward W. Knightly,et al.  Enabling vehicular visible light communication (V2LC) networks , 2011, VANET '11.

[131]  M. Reiche,et al.  Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes , 2000, Nature.

[132]  Zabih Ghassemlooy,et al.  Improvement of the Transmission Bandwidth for Indoor Optical Wireless Communication Systems Using a Diffused Gaussian Beam , 2012, IEEE Communications Letters.

[133]  Vimal Bhatia,et al.  Chebyshev Polynomial-Based Adaptive Predistorter for Nonlinear LED Compensation in VLC , 2016, IEEE Photonics Technology Letters.

[134]  Roland Winston,et al.  The thermodynamic limits of light concentrators , 1990 .

[135]  C. Wei,et al.  3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[136]  Chi-Wai Chow,et al.  Investigation of 4-ASK modulation with digital filtering to increase 20 times of direct modulation speed of white-light LED visible light communication system , 2012 .

[137]  John R. Barry,et al.  Indoor Channel Characteristics for Visible Light Communications , 2011, IEEE Commun. Lett..

[138]  B. J. Offrein,et al.  FirstLight: Pluggable Optical Interconnect Technologies for Polymeric Electro-Optical Printed Circuit Boards in Data Centers , 2012, Journal of Lightwave Technology.

[139]  David A. Johns,et al.  A comparison of CAP/QAM architectures , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[140]  Harald Haas,et al.  Demonstration of 2.3 Gb/s RGB white-light VLC using polymer based colour-converters and GaN micro-LEDs , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[141]  Joseph M. Kahn,et al.  Imaging diversity receivers for high-speed infrared wireless communication , 1998, IEEE Commun. Mag..

[142]  Mohamed-Slim Alouini,et al.  4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication. , 2015, Optics express.

[143]  Dominic C. O'Brien,et al.  Experimental proof-of-concept of optical spatial modulation OFDM using micro LEDs , 2015, 2015 IEEE International Conference on Communication Workshop (ICCW).

[144]  Harald Haas,et al.  Visible light communication using OFDM , 2006, 2nd International Conference on Testbeds and Research Infrastructures for the Development of Networks and Communities, 2006. TRIDENTCOM 2006..

[145]  Meng-Chyi Wu,et al.  High-Speed Light-Emitting Diodes Emitting at 500 nm With 463-MHz Modulation Bandwidth , 2014, IEEE Electron Device Letters.

[146]  Hao-Chung Kuo,et al.  450-nm GaN laser diode enables high-speed visible light communication with 9-Gbps QAM-OFDM. , 2015, Optics express.

[147]  Sung-Man Kim,et al.  Experimental Demonstration of 4×4 MIMO Wireless Visible Light Communication Using a Commercial CCD Image Sensor , 2012, J. Inform. and Commun. Convergence Engineering.

[148]  Henri Benisty,et al.  High-efficiency semiconductor resonant-cavity light-emitting diodes: a review , 2002 .

[149]  Gareth Parry,et al.  Optical hotspots speed up wireless communication , 2007 .

[150]  Shlomi Arnon,et al.  Underwater optical wireless communication network , 2010 .

[151]  Shoji Kawahito,et al.  LED and CMOS Image Sensor Based Optical Wireless Communication System for Automotive Applications , 2013, IEEE Photonics Journal.

[152]  Chia-Lung Tsai,et al.  Line-of-Sight Visible Light Communications With InGaN-Based Resonant Cavity LEDs , 2013, IEEE Photonics Technology Letters.

[153]  Olaf Ziemann,et al.  GaN Light-Emitting Diodes for up to 5.5-Gb/s Short-Reach Data Transmission Over SI-POF , 2014, IEEE Photonics Technology Letters.

[154]  Shubham Saloni,et al.  WiFi-aware as a connectivity solution for IoT pairing IoT with WiFi aware technology: Enabling new proximity based services , 2016, 2016 International Conference on Internet of Things and Applications (IOTA).

[155]  Li Tao,et al.  High Speed WDM VLC System Based on Multi-Band CAP64 With Weighted Pre-Equalization and Modified CMMA Based Post-Equalization , 2014, IEEE Communications Letters.

[156]  Cong Wang,et al.  SBVLC: Secure barcode-based visible light communication for smartphones , 2014, IEEE INFOCOM 2014 - IEEE Conference on Computer Communications.

[157]  Arthur J. Lowery,et al.  SPC07-4: Performance of Asymmetrically Clipped Optical OFDM in AWGN for an Intensity Modulated Direct Detection System , 2006, IEEE Globecom 2006.

[158]  Stefan Videv,et al.  A SPAD-Based Visible Light Communications Receiver Employing Higher Order Modulation , 2014, GLOBECOM 2014.

[159]  P. H. Binh,et al.  Demonstration of 300 Mbit/s free space optical link with commercial visible LED , 2013, 2013 IEEE 11th International New Circuits and Systems Conference (NEWCAS).

[160]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[161]  Shlomi Arnon,et al.  Non-line-of-sight underwater optical wireless communication network. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[162]  Xia Zhou,et al.  Lighting Up the Internet of Things with DarkVLC , 2016, HotMobile.

[163]  R. Mesleh,et al.  A novel method to mitigate LED nonlinearity distortions in optical wireless OFDM systems , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[164]  Hsin-Mu Tsai,et al.  Smart automotive lighting for vehicle safety , 2013, IEEE Communications Magazine.

[165]  D. O’brien,et al.  High-Speed Visible Light Communications Using Multiple-Resonant Equalization , 2008, IEEE Photonics Technology Letters.

[166]  Ian Watson,et al.  Metal organic vapour phase epitaxy of AlN, GaN, InN and their alloys: a key chemical technology for advanced device applications , 2013 .

[167]  Shuji Nakamura,et al.  Recombination dynamics of localized excitons in cubic InxGa1−xN/GaN multiple quantum wells grown by radio frequency molecular beam epitaxy on 3C–SiC substrate , 2003 .

[168]  Stefan Videv,et al.  Unlocking Spectral Efficiency in Intensity Modulation and Direct Detection Systems , 2015, IEEE Journal on Selected Areas in Communications.

[169]  Harald Haas,et al.  Optical Spatial Modulation , 2011, IEEE/OSA Journal of Optical Communications and Networking.

[170]  Chao Wang,et al.  Visible light communication application scenarios based on Android smart devices’ LED lamp , 2015, 2015 14th International Conference on Optical Communications and Networks (ICOCN).

[171]  M. Haardt,et al.  Comparison of OFDM and frequency domain equalization for dispersive optical channels with direct detection , 2012, 2012 14th International Conference on Transparent Optical Networks (ICTON).

[172]  Masao Nakagawa,et al.  Wireless optical transmissions with white colored LED for wireless home links , 2000, 11th IEEE International Symposium on Personal Indoor and Mobile Radio Communications. PIMRC 2000. Proceedings (Cat. No.00TH8525).

[173]  Erdan Gu,et al.  Size-dependent capacitance study on InGaN-based micro-light-emitting diodes , 2014 .

[174]  Jinn-Kong Sheu,et al.  III-Nitride-Based Cyan Light-Emitting Diodes With GHz Bandwidth for High-Speed Visible Light Communication , 2016, IEEE Electron Device Letters.

[175]  O. Ziemann,et al.  Comparison of Modulation Schemes for 10.7 Gb/s Transmission Over Large-Core 1 mm PMMA Polymer Optical Fiber , 2013, Journal of Lightwave Technology.

[176]  D.J. Edwards,et al.  Integrated transceivers for optical wireless communications , 2005, IEEE Journal of Selected Topics in Quantum Electronics.

[177]  M. D. Dawson,et al.  6.25 Gb/s POF link using GaN μLED arrays and optically generated pulse amplitude modulation , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[178]  Xiqi Gao,et al.  Cellular architecture and key technologies for 5G wireless communication networks , 2014, IEEE Communications Magazine.

[179]  Pleun Maaskant,et al.  High-Speed Substrate-Emitting Micro-Light-Emitting Diodes for Applications Requiring High Radiance , 2013 .

[180]  Meng-Chyi Wu,et al.  High-Speed GaN-Based Blue Light-Emitting Diodes With Gallium-Doped ZnO Current Spreading Layer , 2013, IEEE Electron Device Letters.

[181]  F. Hanson,et al.  High bandwidth underwater optical communication. , 2008, Applied optics.

[182]  Sujan Rajbhandari,et al.  Fluorescent Red‐Emitting BODIPY Oligofluorene Star‐Shaped Molecules as a Color Converter Material for Visible Light Communications , 2015 .

[183]  N. Fujimoto,et al.  477 Mbit/s visible light transmission based on OOK-NRZ modulation using a single commercially available visible LED and a practical LED driver with a pre-emphasis circuit , 2013, 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC).

[184]  Eric Feltin,et al.  Progresses in III‐nitride distributed Bragg reflectors and microcavities using AlInN/GaN materials , 2005 .

[185]  Toshiaki Fujii,et al.  Tracking an LED array transmitter for visible light communications in the driving situation , 2010, 2010 7th International Symposium on Wireless Communication Systems.

[186]  Ravinder Singh,et al.  An Enhanced Color Shift Keying Modulation Scheme for High-Speed Wireless Visible Light Communications , 2014, Journal of Lightwave Technology.

[187]  Simon Haykin Adaptive digital communication receivers , 2000 .

[188]  Zabih Ghassemlooy,et al.  Visible light communications towards 5G , 2015 .

[189]  R. Mitra,et al.  Adaptive Sparse Dictionary-Based Kernel Minimum Symbol Error Rate Post-Distortion for Nonlinear LEDs in Visible Light Communications , 2016, IEEE Photonics Journal.

[190]  S. Denbaars,et al.  High-Modulation-Efficiency, Integrated Waveguide Modulator–Laser Diode at 448 nm , 2016 .

[191]  G Cossu,et al.  3.4 Gbit/s visible optical wireless transmission based on RGB LED. , 2012, Optics express.

[192]  Jian Song,et al.  Subcarrier Grouping OFDM for Visible-Light Communication Systems , 2015, IEEE Photonics Journal.

[193]  K. Langer,et al.  Wireless High-Speed Data Transmission with Phosphorescent White-Light LEDs , 2011 .

[194]  Shaoen Wu,et al.  Visible light communications for 5G wireless networking systems: from fixed to mobile communications , 2014, IEEE Network.

[195]  Hao-Chung Kuo,et al.  Phosphorous Diffuser Diverged Blue Laser Diode for Indoor Lighting and Communication , 2015, Scientific Reports.

[196]  Volker Jungnickel,et al.  Coexistence of WiFi and LiFi toward 5G: concepts, opportunities, and challenges , 2016, IEEE Communications Magazine.

[197]  G. Stepniak,et al.  Experimental Comparison of PAM, CAP, and DMT Modulations in Phosphorescent White LED Transmission Link , 2015, IEEE Photonics Journal.

[198]  G. Cossu,et al.  2.1 Gbit/s visible optical wireless transmission , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[199]  Paul S. Martin,et al.  Illumination with solid state lighting technology , 2002 .

[200]  Siyuan Chen,et al.  2.0-Gb/s Visible Light Link Based on Adaptive Bit Allocation OFDM of a Single Phosphorescent White LED , 2015, IEEE Photonics Journal.

[201]  Mohsen Kavehrad,et al.  Grouped modulation scheme for led array module in a visible light communication system , 2015, IEEE Wireless Communications.

[202]  Harald Haas,et al.  Avoiding spectral efficiency loss in unipolar OFDM for optical wireless communication , 2014, 2014 IEEE International Conference on Communications (ICC).

[203]  R. V. Penty,et al.  Wireless Visible Light Communications Employing Feed-Forward Pre-Equalization and PAM-4 Modulation , 2015, Journal of Lightwave Technology.

[204]  Xuan Tang,et al.  Experimental Demonstration of a 1024-QAM Optical Camera Communication System , 2016, IEEE Photonics Technology Letters.

[205]  Kamran Azadet,et al.  Equalization and FEC techniques for optical transceivers , 2002, IEEE J. Solid State Circuits.

[206]  Jerzy Siuzdak,et al.  1.1 GBIT/S white lighting LED‐based visible light link with pulse amplitude modulation and Volterra DFE equalization , 2015 .

[207]  Honglei Li,et al.  High Bandwidth Visible Light Communications Based on a Post-Equalization Circuit , 2014, IEEE Photonics Technology Letters.

[208]  Zabih Ghassemlooy,et al.  Performance of carrier-less amplitude and phase modulation with frequency domain equalization for indoor visible light communications , 2015, 2015 4th International Workshop on Optical Wireless Communications (IWOW).

[209]  Boyuan Jin,et al.  Visible light communications using blind equalization , 2011, 2011 Asia Communications and Photonics Conference and Exhibition (ACP).

[210]  S. Hranilovic,et al.  A pixelated MIMO wireless optical communication system , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[211]  Jianjun Yu,et al.  Demonstration of 575-Mb/s downlink and 225-Mb/s uplink bi-directional SCM-WDM visible light communication using RGB LED and phosphor-based LED. , 2013, Optics express.

[212]  Pleun Maaskant,et al.  200 Mbit/s data transmission through 100 m of plastic optical fibre with nitride LEDs , 2002 .

[213]  J. Armstrong,et al.  OFDM for Optical Communications , 2009, Journal of Lightwave Technology.

[214]  Michael S. Shur,et al.  Solid-State Lighting: Toward Superior Illumination , 2005, Proceedings of the IEEE.

[215]  Joseph John,et al.  Modeling and simulation of indoor optical wireless channels: a review , 2003, TENCON 2003. Conference on Convergent Technologies for Asia-Pacific Region.

[216]  H. Haas,et al.  LED Based Wavelength Division Multiplexed 10 Gb/s Visible Light Communications , 2016, Journal of Lightwave Technology.

[217]  Harald Haas,et al.  Optical spatial modulation using colour LEDs , 2013, 2013 IEEE International Conference on Communications (ICC).

[218]  Sien Chi,et al.  Performance Comparison of OFDM Signal and CAP Signal Over High Capacity RGB-LED-Based WDM Visible Light Communication , 2013, IEEE Photonics Journal.

[219]  Weiwei Hu,et al.  High-Spatial-Diversity Imaging Receiver Using Fisheye Lens for Indoor MIMO VLCs , 2014, IEEE Photonics Technology Letters.

[220]  Rongling Li,et al.  3.25-Gbps visible light communication system based on single carrier frequency domain equalization utilizing an RGB LED , 2014, OFC 2014.

[221]  Theo Kreouzis,et al.  High-speed electroluminescence modulation of a conjugated-polymer light emitting diode , 2009 .

[222]  R. Czernecki,et al.  Free-space and underwater GHz data transmission using AlGaInN laser diode technology , 2016, SPIE Defense + Security.

[223]  Dominic O'Brien,et al.  Demonstration of high-speed data transmission using MIMO-OFDM visible light communications , 2010, 2010 IEEE Globecom Workshops.

[224]  Dominic C. O'Brien Optical Multi-Input Multi-Output systems for short-range free-space data transmission , 2010, 2010 7th International Symposium on Communication Systems, Networks & Digital Signal Processing (CSNDSP 2010).

[225]  Nan Chi,et al.  A Gb/s VLC Transmission Using Hardware Preequalization Circuit , 2015, IEEE Photonics Technology Letters.

[226]  Shoji Kawahito,et al.  Image-sensor-based visible light communication for automotive applications , 2014, IEEE Communications Magazine.

[227]  Sasikumar Arumugam,et al.  An Organic Down-Converting Material for White-Light Emission from Hybrid LEDs , 2014, Advanced materials.

[228]  Christian-Alexander Bunge,et al.  Advanced Modulation Formats in Phosphorous LED VLC Links and the Impact of Blue Filtering , 2015, Journal of Lightwave Technology.

[229]  Robert J. Baxley,et al.  Nonlinear distortion mitigation in visible light communications , 2015, IEEE Wireless Communications.

[230]  M. Pessa,et al.  TOPICAL REVIEW: Resonant cavity light emitting diode for a polymer optical fibre system , 2002 .

[231]  Hongda Chen,et al.  An analog modulator for 460 MB/S visible light data transmission based on OOK-NRS modulation , 2015, IEEE Wireless Communications.

[232]  Giulio Cossu,et al.  5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥ 1.5 m) , 2014, 2014 The European Conference on Optical Communication (ECOC).

[233]  Mohsen Kavehrad,et al.  On the performance of single- and multi-carrie modulation schemes for indoor visible light communication systems , 2014, 2014 IEEE Global Communications Conference.

[234]  Zabih Ghassemlooy,et al.  A MIMO-ANN system for increasing data rates in organic visible light communications systems , 2013, 2013 IEEE International Conference on Communications (ICC).

[235]  R. Ramirez-Iniguez,et al.  Optical antenna design for indoor optical wireless communication systems , 2005, Int. J. Commun. Syst..

[236]  Lajos Hanzo,et al.  An adaptive scaling and biasing scheme for OFDM-based visible light communication systems. , 2014, Optics express.

[237]  Sridhar Rajagopal,et al.  IEEE 802.15.7 visible light communication: modulation schemes and dimming support , 2012, IEEE Communications Magazine.

[238]  M. Pessa,et al.  Light-emitting diode emitting at 650 nm with 200-MHz small-signal modulation bandwidth , 2000, IEEE Photonics Technology Letters.

[239]  Demonstrator A Multi-Gigabit / sec Integrated Multiple-Input Multiple-Output VLC , 2017 .

[240]  Erdan Gu,et al.  Colloidal quantum dot nanocomposites for visible wavelength conversion of modulated optical signals , 2012 .

[241]  R. A. Cryan,et al.  Optical space communications employing pulse position modulation , 1992 .

[242]  Li Tao,et al.  8-Gb/s RGBY LED-Based WDM VLC System Employing High-Order CAP Modulation and Hybrid Post Equalizer , 2015, IEEE Photonics Journal.

[243]  Nobuhiro Fujimoto,et al.  614 Mbit/s OOK-based transmission by the duobinary technique using a single commercially available visible LED for high-speed visible light communications , 2012, 2012 38th European Conference and Exhibition on Optical Communications.

[244]  Yoichi Kawakami,et al.  Excitonic properties of polar, semipolar, and nonpolar InGaN/GaN strained quantum wells with potential fluctuations , 2008 .

[245]  Gang Chen,et al.  Traffic light to vehicle visible light communication channel characterization. , 2012, Applied optics.

[246]  Candice King,et al.  Fundamentals of wireless communications , 2013, 2014 67th Annual Conference for Protective Relay Engineers.

[247]  Adrian Neild,et al.  Visible light positioning: a roadmap for international standardization , 2013, IEEE Commun. Mag..

[248]  Brian Corbett,et al.  Multi-level single mode 2D polymer waveguide optical interconnects using nano-imprint lithography. , 2015, Optics express.

[249]  Zabih Ghassemlooy,et al.  Experimental demonstration of a 10BASE-T Ethernet visible light communications system using white phosphor light-emitting diodes , 2014, IET Circuits Devices Syst..

[250]  Sang-Kook Han,et al.  Overcoming bandwidth limitation of LED by using multilevel differential PAM in VLC , 2015 .

[251]  K. Langer,et al.  513 Mbit/s Visible Light Communications Link Based on DMT-Modulation of a White LED , 2010, Journal of Lightwave Technology.

[252]  Dominic C. O'Brien,et al.  High-Speed Integrated Visible Light Communication System: Device Constraints and Design Considerations , 2015, IEEE Journal on Selected Areas in Communications.

[253]  Joseph M. Kahn,et al.  Differential pulse-position modulation for power-efficient optical communication , 1999, IEEE Trans. Commun..

[254]  Nan Chi,et al.  Indoor gigabit 2 × 2 imaging multiple-input–multiple-output visible light communication , 2014 .

[255]  Hsiao-Hwa Chen,et al.  Channel modeling for visible light communications - a survey , 2016, Wirel. Commun. Mob. Comput..

[256]  O. Ziemann,et al.  POF Handbook: Optical Short Range Transmission Systems , 2008 .

[257]  Stefan Videv,et al.  Single-chip discrete multitone generation , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[258]  Volker Jungnickel,et al.  High-speed visible light communication systems , 2013, IEEE Communications Magazine.

[259]  Ashish Pandharipande,et al.  Connectivity in IoT indoor lighting systems with visible light communications , 2015, 2015 IEEE Online Conference on Green Communications (OnlineGreenComm).

[260]  Tomas Novak,et al.  Comparison of LED properties, compact fluorescent bulbs and bulbs in residential areas , 2015, 2015 16th International Scientific Conference on Electric Power Engineering (EPE).

[261]  Myungsik Yoo,et al.  An in-Depth Survey of Visible Light Communication Based Positioning Systems , 2016, Sensors.

[262]  Harald Haas,et al.  Improving SINR in indoor cellular visible light communication networks , 2014, 2014 IEEE International Conference on Communications (ICC).

[263]  Stanislav Zvanovec,et al.  A Multi-CAP Visible-Light Communications System With 4.85-b/s/Hz Spectral Efficiency , 2015, IEEE Journal on Selected Areas in Communications.

[264]  Jun-Xi Wang,et al.  Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons. , 2015, Optics express.

[265]  Osamu Takyu,et al.  A High-Speed LED Driver That Sweeps Out the Remaining Carriers for Visible Light Communications , 2014, Journal of Lightwave Technology.

[266]  Xuan Tang,et al.  Fundamental analysis of a car to car visible light communication system , 2014, 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP).

[267]  H. Masui,et al.  Nonpolar and Semipolar III-Nitride Light-Emitting Diodes: Achievements and Challenges , 2010, IEEE Transactions on Electron Devices.

[268]  Robert J. Baxley,et al.  Achievable data rate analysis of clipped FLIP-OFDM in optical wireless communication , 2012, 2012 IEEE Globecom Workshops.

[269]  John M. Cioffi,et al.  On the relation between V-BLAST and the GDFE , 2001, IEEE Communications Letters.

[270]  Nan Chi,et al.  A 2×2 imaging MIMO system based on LED Visible Light Communications employing space balanced coding and integrated PIN array reception , 2016 .

[271]  Hoa Le Minh,et al.  80 Mbit/s Visible Light Communications using pre-equalized white LED , 2008, 2008 34th European Conference on Optical Communication.

[272]  U. Bapst,et al.  Wireless in-house data communication via diffuse infrared radiation , 1979 .

[273]  G. Cossu,et al.  1-Gb/s Transmission Over a Phosphorescent White LED by Using Rate-Adaptive Discrete Multitone Modulation , 2012, IEEE Photonics Journal.

[274]  Tariq S. Durrani,et al.  A new adaptive functional-link neural-network-based DFE for overcoming co-channel interference , 1997, IEEE Trans. Commun..

[275]  J. S. Yahng,et al.  Field-dependent carrier decay dynamics in strained In x Ga 1-x N/GaN quantum wells , 2002 .

[276]  A. J. Kent,et al.  Low fraction of hexagonal inclusions in thick and bulk cubic GaN layers , 2014 .

[277]  Yi Jiang,et al.  Performance Analysis of ZF and MMSE Equalizers for MIMO Systems: An In-Depth Study of the High SNR Regime , 2011, IEEE Transactions on Information Theory.

[278]  Toshiaki Fujii,et al.  High-speed-camera image processing based LED traffic light detection for road-to-vehicle visible light communication , 2010, 2010 IEEE Intelligent Vehicles Symposium.

[279]  Guohong Wang,et al.  Quantum Efficiency Enhancement of 530 nm InGaN Green Light-Emitting Diodes with Shallow Quantum Well , 2013 .

[280]  H. Haas,et al.  Information Rate of OFDM-Based Optical Wireless Communication Systems With Nonlinear Distortion , 2013, Journal of Lightwave Technology.

[281]  S. Rajbhandari,et al.  A simple wide field of view concentrator for free space visible light communications , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[282]  Alex J. Grant,et al.  PAM-SCFDE for Optical Wireless Communications , 2015, Journal of Lightwave Technology.

[283]  Richard V. Penty,et al.  μLED-Based Single-Wavelength Bi-directional POF Link With 10 Gb/s Aggregate Data Rate , 2015, Journal of Lightwave Technology.

[284]  K D Dambul,et al.  Indoor Optical Wireless MIMO System With an Imaging Receiver , 2011, IEEE Photonics Technology Letters.

[285]  Mingming Tan,et al.  Visible light communications using a directly modulated 422 nm GaN laser diode. , 2013, Optics letters.

[286]  Hongen Shen,et al.  Comparison of time‐resolved photoluminescence from InGaN single quantum wells grown on nonpolar and semipolar bulk GaN substrates , 2009 .

[287]  S. Arnon,et al.  Short-Range Optical Wireless Communications , 2005 .

[288]  Sebastian Randel,et al.  Advanced Modulation Schemes for Short-Range Optical Communications , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[289]  M.H. Crawford,et al.  LEDs for Solid-State Lighting: Performance Challenges and Recent Advances , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[290]  Yunzhi Dong,et al.  Gigabit Communications over Plastic Optical Fiber , 2011, IEEE Solid-State Circuits Magazine.

[291]  Hoa Le Minh,et al.  High-Speed Optical Wireless Demonstrators: Conclusions and Future Directions , 2012, Journal of Lightwave Technology.

[292]  Thomas Q. Wang,et al.  Performance of optical receivers using photodetectors with different fields of view in an indoor cellular communication system , 2015, 2015 International Telecommunication Networks and Applications Conference (ITNAC).

[293]  U. Chung,et al.  Highly efficient yellow photoluminescence from {11–22} InGaN multiquantum-well grown on nanoscale pyramid structure , 2010 .

[294]  Mohamed-Slim Alouini,et al.  4-Gbit/s visible light communication link based on 16-QAM OFDM transmission over remote phosphor-film converted white light by using blue laser diode. , 2015, Optics express.

[295]  H. Haas,et al.  A 3-Gb/s Single-LED OFDM-Based Wireless VLC Link Using a Gallium Nitride $\mu{\rm LED}$ , 2014, IEEE Photonics Technology Letters.

[296]  I. White,et al.  High Bandwidth GaN-Based Micro-LEDs for Multi-Gb/s Visible Light Communications , 2016, IEEE Photonics Technology Letters.

[297]  Qin Chen,et al.  CMOS Photodetectors Integrated With Plasmonic Color Filters , 2012, IEEE Photonics Technology Letters.

[298]  Frank Sjöberg A VDSL tutorial , 2000 .

[299]  Yu-Chieh Chi,et al.  Going beyond 4 Gbps data rate by employing RGB laser diodes for visible light communication. , 2015, Optics express.

[300]  Zabih Ghassemlooy,et al.  Design and analysis of an angular‐segmented full‐mobility visible light communications receiver , 2014, Trans. Emerg. Telecommun. Technol..

[301]  Franz-Josef Tegude,et al.  High-speed GaN/GaInN nanowire array light-emitting diode on silicon(111). , 2015, Nano letters.

[302]  David I. Forsyth,et al.  Performance comparisons between PIN and APD photodetectors for use in optical communication systems , 2013 .

[303]  Guoqiang Ni,et al.  Color demultiplexer using angularly multiplexed volume holograms as a receiver optical end for VLC based on RGB white LED , 2014 .

[304]  Xiao Wei Sun,et al.  InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination , 2014 .

[305]  Jean Armstrong,et al.  Comparison of Asymmetrically Clipped Optical OFDM and DC-Biased Optical OFDM in AWGN , 2008, IEEE Communications Letters.

[306]  W.A. Krzymien,et al.  Multiple-antenna communication systems: an emerging technology , 2004, Canadian Journal of Electrical and Computer Engineering.

[307]  Y. Kawamura,et al.  Transmission of the LED light from the space to the ground , 2013 .

[308]  H. Haas,et al.  Optical OFDM With Single-Photon Avalanche Diode , 2015, IEEE Photonics Technology Letters.

[309]  Harald Haas,et al.  Performance Comparison of MIMO Techniques for Optical Wireless Communications in Indoor Environments , 2013, IEEE Transactions on Communications.

[310]  Nan Chi,et al.  Experimental verification of performance improvement for a gigabit wavelength division multiplexing visible light communication system utilizing asymmetrically clipped optical orthogonal frequency division multiplexing , 2014 .

[311]  Lu Liu,et al.  Fisheye-lens-based space division multiplexing system for visible light communications , 2015, EURASIP J. Wirel. Commun. Netw..

[312]  Zabih Ghassemlooy,et al.  A new location system for an underground mining environment using visible light communications , 2014, 2014 9th International Symposium on Communication Systems, Networks & Digital Sign (CSNDSP).

[313]  C. Wei,et al.  1.1-Gb/s White-LED-Based Visible Light Communication Employing Carrier-Less Amplitude and Phase Modulation , 2012, IEEE Photonics Technology Letters.

[314]  Chi-Ho Chan,et al.  LED traffic light as a communications device , 1999, Proceedings 199 IEEE/IEEJ/JSAI International Conference on Intelligent Transportation Systems (Cat. No.99TH8383).

[315]  Seong-Ro Lee,et al.  Received signal strength ratio based optical wireless indoor localization using light emitting diodes for illumination , 2013, 2013 IEEE International Conference on Consumer Electronics (ICCE).

[316]  Nan Chi,et al.  Demonstration of High-Speed 2 × 2 Non-Imaging MIMO Nyquist Single Carrier Visible Light Communication With Frequency Domain Equalization , 2014, Journal of Lightwave Technology.

[317]  Jim Esch Spatial Modulation for Generalized MIMO: Challenges, Opportunities, and Implementation , 2014, Proc. IEEE.

[318]  Shuji Nakamura,et al.  2 Gbit/s data transmission from an unfiltered laser-based phosphor-converted white lighting communication system. , 2015, Optics express.

[319]  Nan Chi,et al.  750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit , 2015, 2015 Optical Fiber Communications Conference and Exhibition (OFC).

[320]  Bryan Ellis,et al.  Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation , 2015 .

[321]  Harald Haas,et al.  A multi-gigabit/sec integrated multiple input multiple output visible light communication demonstrator , 2017 .

[322]  Noah D Bronstein,et al.  Quantum Dot Luminescent Concentrator Cavity Exhibiting 30-fold Concentration , 2015 .

[323]  H. Haas,et al.  Visible Light Communication Using a Blue GaN $\mu $ LED and Fluorescent Polymer Color Converter , 2014, IEEE Photonics Technology Letters.

[324]  Matthew D. Higgins,et al.  Free-Space Optical Communications in Vehicular Networks Using Rectangular Guiding Models , 2016, IEEE Photonics Technology Letters.

[325]  Steve Collins,et al.  High gain, wide field of view concentrator for optical communications. , 2014, Optics letters.

[326]  Carmen Vazquez,et al.  Efficient Multiplexer/Demultiplexer for Visible WDM Transmission over SI-POF Technology , 2015, Journal of Lightwave Technology.

[327]  Masao Nakagawa,et al.  Integrated system of white LED visible-light communication and power-line communication , 2002, The 13th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[328]  Idelfonso Tafur Monroy,et al.  Multiband Carrierless Amplitude Phase Modulation for High Capacity Optical Data Links , 2014, Journal of Lightwave Technology.