Electron Beam Melted Beta-type Ti-24Nb-4Zr-8Sn Porous Structures With High Strength-to-Modulus Ratio

[1]  Lai‐Chang Zhang,et al.  Processing and properties of topologically optimised biomedical Ti-24Nb-4Zr-8Sn scaffolds manufactured by selective laser melting , 2015 .

[2]  Daryoush Habibi,et al.  Effect of α″ martensite on the microstructure and mechanical properties of beta-type Ti–Fe–Ta alloys , 2015 .

[3]  Konda Gokuldoss Prashanth,et al.  Comparison of wear properties of commercially pure titanium prepared by selective laser melting and casting processes , 2015 .

[4]  Konda Gokuldoss Prashanth,et al.  Mechanical Behavior of Porous Commercially Pure Ti And Ti–TiB Composite Materials Manufactured By Selective Laser Melting , 2015 .

[5]  J. Grotowski,et al.  High specific strength and stiffness structures produced using selective laser melting , 2014 .

[6]  L. Murr,et al.  Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. , 2014, Acta biomaterialia.

[7]  Lai‐Chang Zhang,et al.  Comparative study of microstructures and mechanical properties of in situ Ti–TiB composites produced by selective laser melting, powder metallurgy, and casting technologies , 2014 .

[8]  Mariana Calin,et al.  Selective laser melting of in situ titanium–titanium boride composites: Processing, microstructure and mechanical properties , 2014 .

[9]  Mariana Calin,et al.  Manufacture by selective laser melting and mechanical behavior of commercially pure titanium , 2014 .

[10]  L. Murr,et al.  Microstructures and Hardness Properties for β-Phase Ti–24Nb–4Zr–7.9Sn Alloy Fabricated by Electron Beam Melting , 2013 .

[11]  L. Murr,et al.  Compression deformation behavior of Ti-6Al-4V alloy with cellular structures fabricated by electron beam melting. , 2012, Journal of the mechanical behavior of biomedical materials.

[12]  J. Kruth,et al.  The effect of pore geometry on the in vitro biological behavior of human periosteum-derived cells seeded on selective laser-melted Ti6Al4V bone scaffolds. , 2012, Acta biomaterialia.

[13]  M. Kunz,et al.  The study of stress application and corrosion cracking on Ni-16 Cr-9 Fe (Alloy 600) C-ring samples by polychromatic X-ray microdiffraction , 2012 .

[14]  Yulin Hao,et al.  Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy , 2011 .

[15]  S. Biamino,et al.  Electron beam melting of Ti–48Al–2Cr–2Nb alloy: Microstructure and mechanical properties investigation , 2011 .

[16]  Ryan B. Wicker,et al.  Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting , 2010 .

[17]  A. Singh,et al.  Ti based biomaterials, the ultimate choice for orthopaedic implants – A review , 2009 .

[18]  T. Cui,et al.  Fatigue properties of a metastable beta-type titanium alloy with reversible phase transformation. , 2008, Acta biomaterialia.

[19]  Ph. Bertrand,et al.  Parametric analysis of the selective laser melting process , 2007 .

[20]  R. Yang,et al.  Elastic deformation behaviour of Ti-24Nb-4Zr-7.9Sn for biomedical applications. , 2007, Acta biomaterialia.

[21]  Abhay Pandit,et al.  Fabrication methods of porous metals for use in orthopaedic applications. , 2006, Biomaterials.

[22]  Shujun Li,et al.  Super-elastic titanium alloy with unstable plastic deformation , 2005 .

[23]  L. Allard,et al.  Phase transformations in Ti–35Nb–7Zr–5Ta–(0.06–0.68)O alloys , 2005 .

[24]  Mitsuo Niinomi,et al.  Fatigue performance and cyto-toxicity of low rigidity titanium alloy, Ti-29Nb-13Ta-4.6Zr. , 2003, Biomaterials.

[25]  K. Leong,et al.  Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. , 2003, Biomaterials.

[26]  Shujun Li,et al.  Effect of Nb on microstructural characteristics of Ti-Nb-Ta-Zr alloy for biomedical applications , 2002 .

[27]  Kamran Mumtaz,et al.  High density selective laser melting of Waspaloy , 2008 .