XKCM1: A Xenopus Kinesin-Related Protein That Regulates Microtubule Dynamics during Mitotic Spindle Assembly

[1]  Yixian Zheng,et al.  Nucleation of microtubule assembly by a γ-tubulin-containing ring complex , 1995, Nature.

[2]  S Inoué,et al.  1. EARLY HISTORY: THE DYNAMIC EQUILIBRIUM MODEL , 1995 .

[3]  K. Hirose,et al.  Nucleotide-dependent angular change in kinesin motor domain bound to tubulin , 1995, Nature.

[4]  R. Fletterick,et al.  Three-dimensional structure of a tubulin-motor-protein complex , 1995, Nature.

[5]  N. Hirokawa,et al.  Three-dimensional structure of the kinesin headá¤-microtubule complex , 1995, Nature.

[6]  S. Fuller,et al.  Structure of growing microtubule ends: two-dimensional sheets close into tubes at variable rates , 1995, The Journal of cell biology.

[7]  I. Vernos,et al.  Xklp15 a chromosomal xenopus kinesin-like protein essential for spindle organization and chromosome positioning , 1995, Cell.

[8]  N. Hirokawa,et al.  KIF2 is a new microtubule-based anterograde motor that transports membranous organelles distinct from those carried by kinesin heavy chain or KIF3A/B , 1995, The Journal of cell biology.

[9]  J. McIntosh,et al.  Minus-end-directed motion of kinesin–coated microspheres driven by microtubule depolymerization , 1995, Nature.

[10]  T. Mitchison,et al.  Identification and partial characterization of mitotic centromere- associated kinesin, a kinesin-related protein that associates with centromeres during mitosis , 1995, The Journal of cell biology.

[11]  T. Mitchison,et al.  A new role for motor proteins as couplers to depolymerizing microtubules , 1995, The Journal of cell biology.

[12]  J. McIntosh,et al.  Antibodies to the kinesin motor domain and CENP-E inhibit microtubule depolymerization-dependent motion of chromosomes in vitro , 1995, The Journal of cell biology.

[13]  S. Leibler,et al.  Dynamic instability of microtubules as an efficient way to search in space. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Salmon,et al.  Yeast Kar3 is a minus‐end microtubule motor protein that destabilizes microtubules preferentially at the minus ends. , 1994, The EMBO journal.

[15]  E D Salmon,et al.  Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle , 1994, The Journal of cell biology.

[16]  E D Salmon,et al.  Directional instability of kinetochore motility during chromosome congression and segregation in mitotic newt lung cells: a push-pull mechanism , 1993, The Journal of cell biology.

[17]  T. Mitchison,et al.  Topoisomerase II does not play a scaffolding role in the organization of mitotic chromosomes assembled in Xenopus egg extracts , 1993, The Journal of cell biology.

[18]  N. Hirokawa,et al.  Kinesin family in murine central nervous system , 1992, The Journal of cell biology.

[19]  Timothy J. Mitchison,et al.  Mitotic spindle organization by a plus-end-directed microtubule motor , 1992, Nature.

[20]  S. Leibler,et al.  Control of microtubule dynamics and length by cyclin A- and cyclin B- dependent kinases in Xenopus egg extracts , 1992, The Journal of cell biology.

[21]  A. Murray,et al.  Sister chromatid separation in frog egg extracts requires DNA topoisomerase II activity during anaphase , 1992, The Journal of cell biology.

[22]  T. Mitchison,et al.  Evidence for kinesin-related proteins in the mitotic apparatus using peptide antibodies. , 1992, Journal of Cell Science.

[23]  E. Mandelkow,et al.  Microtubule dynamics and microtubule caps: a time-resolved cryo- electron microscopy study , 1991, The Journal of cell biology.

[24]  A. Lupas,et al.  Predicting coiled coils from protein sequences , 1991, Science.

[25]  A. Hyman,et al.  Two different microtubule-based motor activities with opposite polarities in kinetochores , 1991, Nature.

[26]  R. Zinkowski,et al.  CENP‐E, a novel human centromere‐associated protein required for progression from metaphase to anaphase. , 1991, The EMBO journal.

[27]  T. Mitchison,et al.  Mitotic spindle assembly by two different pathways in vitro , 1991, The Journal of cell biology.

[28]  R. Vale Severing of stable microtubules by a mitotically activated protein in xenopus egg extracts , 1991, Cell.

[29]  A. Hyman,et al.  Real-time visualization of cell cycle-dependent changes in microtubule dynamics in cytoplasmic extracts , 1990, Cell.

[30]  J. McIntosh,et al.  Cytoplasmic dynein is localized to kinetochores during mitosis , 1990, Nature.

[31]  M. Sheetz,et al.  Localization of cytoplasmic dynein to mitotic spindles and kinetochores , 1990, Nature.

[32]  A. Hyman,et al.  Modulation of microtubule stability by kinetochores in vitro , 1990, The Journal of cell biology.

[33]  Eric Karsenti,et al.  Regulation of microtubule dynamics by cdc2 protein kinase in cell-free extracts of Xenopus eggs , 1990, Nature.

[34]  E. Salmon,et al.  Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies , 1988, The Journal of cell biology.

[35]  R. Simpson,et al.  Expression of an enzymatically active parasite molecule in Escherichia coli: Schistosoma japonicum glutathione S-transferase. , 1988, Molecular and biochemical parasitology.

[36]  M. Kirschner,et al.  Beyond self-assembly: From microtubules to morphogenesis , 1986, Cell.

[37]  J. Maller,et al.  Induction of nuclear envelope breakdown, chromosome condensation, and spindle formation in cell-free extracts , 1985, The Journal of cell biology.

[38]  E D Salmon,et al.  Tubulin dynamics in cultured mammalian cells , 1984, The Journal of cell biology.

[39]  J. McIntosh,et al.  Spindle microtubule dynamics in sea urchin embryos: analysis using a fluorescein-labeled tubulin and measurements of fluorescence redistribution after laser photobleaching , 1984, The Journal of cell biology.

[40]  M. Kirschner,et al.  Dynamic instability of microtubule growth , 1984, Nature.

[41]  A. Bajer Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis , 1982, The Journal of cell biology.

[42]  B. Alberts,et al.  Purification of a multiprotein complex containing centrosomal proteins from the Drosophila embryo by chromatography with low-affinity polyclonal antibodies. , 1992, Molecular biology of the cell.

[43]  A. Murray,et al.  Cell cycle extracts. , 1991, Methods in cell biology.

[44]  E. Harlow,et al.  Antibodies: A Laboratory Manual , 1988 .