Engineering of NADPH regenerators in Escherichia coli for enhanced biotransformation

[1]  Ka-Yiu San,et al.  Replacing Escherichia coli NAD-dependent glyceraldehyde 3-phosphate dehydrogenase (GAPDH) with a NADP-dependent enzyme from Clostridium acetobutylicum facilitates NADPH dependent pathways. , 2008, Metabolic engineering.

[2]  Wim Soetaert,et al.  Minimizing acetate formation in E. coli fermentations , 2007, Journal of Industrial Microbiology & Biotechnology.

[3]  Yanhe Ma,et al.  Activating transhydrogenase and NAD kinase in combination for improving isobutanol production. , 2013, Metabolic engineering.

[4]  U. Sauer,et al.  Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. , 2001, FEMS Microbiology Letters.

[5]  S. M. Raj,et al.  Production of 3-hydroxypropionic acid via malonyl-CoA pathway using recombinant Escherichia coli strains. , 2012, Journal of biotechnology.

[6]  Frances H Arnold,et al.  Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli. , 2011, Metabolic engineering.

[7]  Ruirui Su,et al.  Overexpression and biochemical characterization of soluble pyridine nucleotide transhydrogenase from Escherichia coli. , 2011, FEMS microbiology letters.

[8]  U. Sauer,et al.  The Soluble and Membrane-bound Transhydrogenases UdhA and PntAB Have Divergent Functions in NADPH Metabolism of Escherichia coli* , 2004, Journal of Biological Chemistry.

[9]  U. Sauer,et al.  Metabolic Flux Ratio Analysis of Genetic and Environmental Modulations of Escherichia coli Central Carbon Metabolism , 1999, Journal of bacteriology.

[10]  T. Drepper,et al.  Novel biocatalysts for white biotechnology , 2006, Biotechnology journal.

[11]  Guo-qiang Chen,et al.  Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production , 2009, Applied Microbiology and Biotechnology.

[12]  T. Imanaka,et al.  Synthesis of optically pure S-sulfoxide by Escherichia coli transformant cells coexpressing the P450 monooxygenase and glucose dehydrogenase genes , 2011, Journal of Industrial Microbiology & Biotechnology.

[13]  Michael Bott,et al.  Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation , 2007, Applied Microbiology and Biotechnology.

[14]  W. Hummel,et al.  Improved synthesis of chiral alcohols with Escherichia coli cells co-expressing pyridine nucleotide transhydrogenase, NADP+-dependent alcohol dehydrogenase and NAD+-dependent formate dehydrogenase , 2004, Biotechnology Letters.

[15]  G. R. Stuart,et al.  POS5 Gene of Saccharomyces cerevisiae Encodes a Mitochondrial NADH Kinase Required for Stability of Mitochondrial DNA , 2003, Eukaryotic Cell.

[16]  S. Kawai,et al.  Molecular characterization of Escherichia coli NAD kinase. , 2001, European journal of biochemistry.

[17]  Myoung-Dong Kim,et al.  Effects of NADH kinase on NADPH-dependent biotransformation processes in Escherichia coli , 2012, Applied Microbiology and Biotechnology.

[18]  J. Schrader,et al.  Improvement of P450BM-3 whole-cell biocatalysis by integrating heterologous cofactor regeneration combining glucose facilitator and dehydrogenase in E. coli , 2008, Applied Microbiology and Biotechnology.

[19]  Hyun‐dong Shin,et al.  Amplification of the NADPH-related genes zwf and gnd for the oddball biosynthesis of PHB in an E. coli transformant harboring a cloned phbCAB operon. , 2002, Journal of bioscience and bioengineering.

[20]  F. Arnold,et al.  Improved product‐per‐glucose yields in P450‐dependent propane biotransformations using engineered Escherichia coli , 2011, Biotechnology and bioengineering.

[21]  Jin‐Byung Park Oxygenase-based whole-cell biocatalysis in organic synthesis. , 2007, Journal of microbiology and biotechnology.

[22]  M. Bott,et al.  Increased NADPH availability in Escherichia coli: improvement of the product per glucose ratio in reductive whole-cell biotransformation , 2011, Applied Microbiology and Biotechnology.

[23]  Costas D Maranas,et al.  Analysis of NADPH supply during xylitol production by engineered Escherichia coli , 2009, Biotechnology and bioengineering.

[24]  G. Stephanopoulos,et al.  Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. , 2005, Metabolic engineering.

[25]  Jin-Ho Seo,et al.  Enhanced production of ɛ-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene , 2007, Applied Microbiology and Biotechnology.

[26]  N. Bruce,et al.  Cofactor Regeneration by a Soluble Pyridine Nucleotide Transhydrogenase for Biological Production of Hydromorphone , 2000, Applied and Environmental Microbiology.

[27]  Y. Liu,et al.  High-level expression of recombinant glucose dehydrogenase and its application in NADPH regeneration , 2006, Journal of Industrial Microbiology & Biotechnology.

[28]  Peng Wang,et al.  Biochemical properties and physiological roles of NADP-dependent malic enzyme in Escherichia coli , 2011, The Journal of Microbiology.

[29]  Huimin Zhao,et al.  Regeneration of cofactors for use in biocatalysis. , 2003, Current opinion in biotechnology.

[30]  Jihye Jung,et al.  Enantioselective bioconversion using Escherichia coli cells expressing Saccharomyces cerevisiae reductase and Bacillus subtilis glucose dehydrogenase. , 2010, Journal of microbiology and biotechnology.

[31]  W. Jang,et al.  High NADPH/NADP+ ratio improves thymidine production by a metabolically engineered Escherichia coli strain. , 2010, Journal of biotechnology.

[32]  G. Bennett,et al.  Effect of Overexpression of a Soluble Pyridine Nucleotide Transhydrogenase (UdhA) on the Production of Poly(3‐hydroxybutyrate) in Escherichia coli , 2006, Biotechnology progress.

[33]  N. Bruce,et al.  The udhA Gene of Escherichia coli Encodes a Soluble Pyridine Nucleotide Transhydrogenase , 1999, Journal of bacteriology.

[34]  W. Jang,et al.  Thymidine production by overexpressing NAD+ kinase in an Escherichia coli recombinant strain , 2009, Biotechnology Letters.

[35]  Myoung-Dong Kim,et al.  Enhanced production of GDP-l-fucose by overexpression of NADPH regenerator in recombinant Escherichia coli , 2011, Applied Microbiology and Biotechnology.

[36]  B. Witholt,et al.  Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. , 2001, Current opinion in biotechnology.

[37]  Huimin Zhao,et al.  Mechanistic investigation of a highly active phosphite dehydrogenase mutant and its application for NADPH regeneration , 2005, The FEBS journal.

[38]  M. Fraaije,et al.  Exploring the Biocatalytic Scope of a Bacterial Flavin-Containing Monooxygenase. , 2011 .

[39]  L. Blank,et al.  Metabolic and Transcriptional Response to Cofactor Perturbations in Escherichia coli , 2010, The Journal of Biological Chemistry.

[40]  Zachary L. Fowler,et al.  Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. , 2010, Metabolic engineering.

[41]  P. Cirino,et al.  Anaerobic Obligatory Xylitol Production in Escherichia coli Strains Devoid of Native Fermentation Pathways , 2010, Applied and Environmental Microbiology.

[42]  Pil Kim,et al.  The effect of NADP‐dependent malic enzyme expression and anaerobic C4 metabolism in Escherichia coli compared with other anaplerotic enzymes , 2007, Journal of applied microbiology.

[43]  Huimin Zhao,et al.  Efficient regeneration of NADPH using an engineered phosphite dehydrogenase , 2007, Biotechnology and bioengineering.

[44]  V. Culotta,et al.  A novel NADH kinase is the mitochondrial source of NADPH in Saccharomyces cerevisiae , 2003, The EMBO journal.