SABV-Depth: A biologically inspired deep learning network for monocular depth estimation

[1]  Yuting Yang,et al.  The New Generation Brain-Inspired Sparse Learning: A Comprehensive Survey , 2022, IEEE Transactions on Artificial Intelligence.

[2]  F. Liu,et al.  Evolutionary Dual-Stream Transformer. , 2022, IEEE transactions on cybernetics.

[3]  Tak-Wai Hui RM-Depth: Unsupervised Learning of Recurrent Monocular Depth in Dynamic Scenes , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  A. Leonardis,et al.  Deep neural networks and image classification in biological vision , 2022, Vision Research.

[5]  Minggang Gan,et al.  Adaptive depth-aware visual relationship detection , 2022, Knowl. Based Syst..

[6]  L. Duan,et al.  The combined effects of the thalamic feed-forward inhibition and feed-back inhibition in controlling absence seizures , 2022, Nonlinear Dynamics.

[7]  J. Álvarez,et al.  A-ViT: Adaptive Tokens for Efficient Vision Transformer , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[8]  Yonghu Zeng,et al.  Self-supervised learning of monocular depth using quantized networks , 2021, Neurocomputing.

[9]  D. Tao,et al.  A Survey on Vision Transformer , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Tat-Jun Chin,et al.  Auto-Rectify Network for Unsupervised Indoor Depth Estimation , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Alessandro Sarti,et al.  LGN-CNN: a biologically inspired CNN architecture , 2019, Neural Networks.

[12]  Beiji Zou,et al.  Single image depth estimation based on sculpture strategy , 2022, Knowl. Based Syst..

[13]  Ning Lv,et al.  Self-supervised Monocular Trained Depth Estimation Using Triplet Attention and Funnel Activation , 2021, Neural Processing Letters.

[14]  Hasib Zunair,et al.  Sharp U-Net: Depthwise Convolutional Network for Biomedical Image Segmentation , 2021, Comput. Biol. Medicine.

[15]  Peter Corcoran,et al.  An efficient encoder-decoder model for portrait depth estimation from single images trained on pixel-accurate synthetic data , 2021, Neural Networks.

[16]  Ian Reid,et al.  Unsupervised Scale-Consistent Depth Learning from Video , 2021, International Journal of Computer Vision.

[17]  Xilin Chen,et al.  OCNet: Object Context for Semantic Segmentation , 2021, International Journal of Computer Vision.

[18]  Si Wu,et al.  A brain-inspired computational model for spatio-temporal information processing , 2021, Neural Networks.

[19]  Cordelia Schmid,et al.  Segmenter: Transformer for Semantic Segmentation , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[20]  Anima Pramanik,et al.  A real-time video surveillance system for traffic pre-events detection. , 2021, Accident; analysis and prevention.

[21]  Pratul P. Srinivasan,et al.  IBRNet: Learning Multi-View Image-Based Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  Ryota Kanai,et al.  Deep learning and the Global Workspace Theory , 2020, Trends in Neurosciences.

[23]  Peter Wonka,et al.  AdaBins: Depth Estimation Using Adaptive Bins , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Haitao Zhao,et al.  Attention-based context aggregation network for monocular depth estimation , 2019, International Journal of Machine Learning and Cybernetics.

[25]  Rosa H. M. Chan,et al.  Comparing biological and artificial vision systems: Network measures of functional connectivity , 2020, Neuroscience Letters.

[26]  Marcos L. Aranda,et al.  Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions , 2020, Cellular and Molecular Life Sciences.

[27]  Chang Shu,et al.  Feature-metric Loss for Self-supervised Learning of Depth and Egomotion , 2020, ECCV.

[28]  Jimson Mathew,et al.  Self-Attention Dense Depth Estimation Network for Unrectified Video Sequences , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[29]  Lanfen Lin,et al.  UNet 3+: A Full-Scale Connected UNet for Medical Image Segmentation , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[30]  Gustavo Carneiro,et al.  Self-Supervised Monocular Trained Depth Estimation Using Self-Attention and Discrete Disparity Volume , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[31]  Xiangyu Zhu,et al.  Deep Spatial Gradient and Temporal Depth Learning for Face Anti-Spoofing , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  J. Changeux,et al.  Conscious Processing and the Global Neuronal Workspace Hypothesis , 2020, Neuron.

[33]  Rares Ambrus,et al.  3D Packing for Self-Supervised Monocular Depth Estimation , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[34]  Changde Du,et al.  Neural Encoding for Human Visual Cortex with Deep Neural Networks Learning “What” and “Where” , 2019, bioRxiv.

[35]  Chunhua Shen,et al.  Enforcing Geometric Constraints of Virtual Normal for Depth Prediction , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[36]  Takayuki Okatani,et al.  Visualization of Convolutional Neural Networks for Monocular Depth Estimation , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[37]  Dacheng Tao,et al.  Geometry-Aware Symmetric Domain Adaptation for Monocular Depth Estimation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[38]  Stefano Soatto,et al.  Bilateral Cyclic Constraint and Adaptive Regularization for Unsupervised Monocular Depth Prediction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[39]  Sertac Karaman,et al.  FastDepth: Fast Monocular Depth Estimation on Embedded Systems , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[40]  James J DiCarlo,et al.  Neural population control via deep image synthesis , 2018, Science.

[41]  Gabriel J. Brostow,et al.  Digging Into Self-Supervised Monocular Depth Estimation , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[42]  Takayuki Okatani,et al.  Revisiting Single Image Depth Estimation: Toward Higher Resolution Maps With Accurate Object Boundaries , 2018, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[43]  Nicu Sebe,et al.  Unsupervised Adversarial Depth Estimation Using Cycled Generative Networks , 2018, 2018 International Conference on 3D Vision (3DV).

[44]  R. Venkatesh Babu,et al.  AdaDepth: Unsupervised Content Congruent Adaptation for Depth Estimation , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[45]  James M. Rehg,et al.  Parallel vision for perception and understanding of complex scenes: methods, framework, and perspectives , 2017, Artificial Intelligence Review.

[46]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[47]  Jörg Stückler,et al.  Semi-Supervised Deep Learning for Monocular Depth Map Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[48]  Oisin Mac Aodha,et al.  Unsupervised Monocular Depth Estimation with Left-Right Consistency , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Nassir Navab,et al.  Deeper Depth Prediction with Fully Convolutional Residual Networks , 2016, 2016 Fourth International Conference on 3D Vision (3DV).

[50]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[51]  Rob Fergus,et al.  Depth Map Prediction from a Single Image using a Multi-Scale Deep Network , 2014, NIPS.

[52]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[53]  Derek Hoiem,et al.  Indoor Segmentation and Support Inference from RGBD Images , 2012, ECCV.

[54]  J. Changeux,et al.  Ongoing Spontaneous Activity Controls Access to Consciousness: A Neuronal Model for Inattentional Blindness , 2005, PLoS biology.

[55]  B. Baars Global workspace theory of consciousness: toward a cognitive neuroscience of human experience. , 2005, Progress in brain research.