Time-constrained sensor scheduling for parameter estimation of distributed systems

The paper discusses an approach to configure a sensor network in a spatial domain that will be used to identify unknown parameters of a distributed system. Particularly, given a finite number of possible sites at which sensors may reside and imposing additional constraints on the accumulated time of sensing, we determine a scheduling policy for discrete scanning sensors so as to maximize a criterion based on the Fisher information matrix associated with the estimated parameters. A computational scheme based on the branch-and-bound method will be provided for the solution of the resulting combinatorial problem. Finally, the proposed technique will be illustrated with simulations on a sensor network scheduling problem for a two-dimensional convective diffusion process.

[1]  Dariusz Ucinski,et al.  Mobile Sensor Routing for Parameter Estimation of Distributed Systems Using the Parallel Tunneling Method , 2008, Int. J. Appl. Math. Comput. Sci..

[2]  Michael Patriksson Simplicial Decomposition Algorithms , 2009, Encyclopedia of Optimization.

[3]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems , 2009 .

[4]  Michael A. Demetriou,et al.  Estimation of Spatially Distributed Processes Using Mobile Spatially Distributed Sensor Network , 2009, SIAM J. Control. Optim..

[5]  Christos G. Cassandras,et al.  Sensor Networks and Cooperative Control , 2005, CDC 2005.

[6]  G. Goodwin,et al.  Optimum experimental design for identification of distributed parameter systems , 1980 .

[7]  Maciej Patan Optimal activation policies for continuous scanning observations in parameter estimation of distributed systems , 2006, Int. J. Syst. Sci..

[8]  Sven Leyffer,et al.  Mixed Integer Nonlinear Programming , 2011 .

[9]  Arye Nehorai,et al.  Localizing vapor-emitting sources by moving sensors , 1994, Proceedings of 1994 28th Asilomar Conference on Signals, Systems and Computers.

[10]  Jose A. Ventura,et al.  Restricted simplicial decomposition for convex constrained problems , 1993, Math. Program..

[11]  D-Optimum Sensor Activity Scheduling for Distributed Parameter Systems , 2009 .

[12]  Michael A. Demetriou Activation Policy of Smart Controllers for Flexible Structures with Multiple Actuator/Sensor Pairs , 2000 .

[13]  YangQuan Chen,et al.  Resource-Constrained Sensor Routing for Parameter Estimation of Distributed Systems , 2008 .

[14]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[15]  A. Vande Wouwer,et al.  Practical issues in distributed parameter estimation: Gradient computation and optimal experiment design , 1996 .

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Carlos S. Kubrusly,et al.  Sensors and controllers location in distributed systems - A survey , 1985, Autom..

[18]  Maciej Patan,et al.  Optimal observation strategies for model-based fault detection in distributed systems , 2005 .

[19]  Maciej Patan,et al.  D-optimal design of a monitoring network for parameter estimation of distributed systems , 2007, J. Glob. Optim..

[20]  F. Pukelsheim Optimal Design of Experiments , 1993 .

[21]  Andrej Pázman,et al.  Foundations of Optimum Experimental Design , 1986 .

[22]  Anthony C. Atkinson,et al.  Optimum Experimental Designs, with SAS , 2007 .

[23]  Christodoulos A. Floudas,et al.  Mixed Integer Nonlinear Programming , 2009, Encyclopedia of Optimization.

[24]  Maciej Patan,et al.  Configuring A Sensor Network for Fault Detection in Distributed Parameter Systems , 2008, Int. J. Appl. Math. Comput. Sci..

[25]  Eric Walter,et al.  Identification of Parametric Models: from Experimental Data , 1997 .

[26]  YangQuan Chen,et al.  Optimal Observation for Cyber-physical Systems: A Fisher-information-matrix-based Approach , 2009 .

[27]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[28]  YangQuan Chen,et al.  Time–Optimal Path Planning of Moving Sensors for Parameter Estimation of Distributed Systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[29]  Maciej Patan,et al.  OPTIMAL ACTIVATION STRATEGY OF DISCRETE SCANNING SENSORS FOR FAULT DETECTION IN DISTRIBUTED-PARAMETER SYSTEMS , 2005 .

[30]  Maciej Patan,et al.  Optimal Observation Strategies for Parameter Estimation of Distributed Systems , 2004 .

[31]  D. Ucinski Optimal sensor location for parameter estimation of distributed processes , 2000 .

[32]  Arye Nehorai,et al.  Landmine detection and localization using chemical sensor array processing , 2000, IEEE Trans. Signal Process..

[33]  Marc M. J. van de Wal,et al.  A review of methods for input/output selection , 2001, Autom..

[34]  J. A. Ventura,et al.  Restricted simplicial decomposition: computation and extensions , 1987 .

[35]  D. Ucinski Optimal Selection of Measurement Locations for Parameter Estimation in Distributed Processes , 2000 .