Numerical Solution of the Bagley-Torvik Equation

[1]  Neville J. Ford,et al.  The numerical solution of fractional differential equations: Speed versus accuracy , 2001, Numerical Algorithms.

[2]  I. Podlubny Fractional differential equations , 1998 .

[3]  Kai Diethelm,et al.  Numerical solution of fractional order differential equations by extrapolation , 1997, Numerical Algorithms.

[4]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[5]  C. Lubich Convolution quadrature and discretized operational calculus. II , 1988 .

[6]  H. Brunner,et al.  The numerical solution of Volterra equations , 1988 .

[7]  C. Lubich Discretized fractional calculus , 1986 .

[8]  C. Lubich,et al.  Fractional linear multistep methods for Abel-Volterra integral equations of the second kind , 1985 .

[9]  R. Bagley,et al.  On the Appearance of the Fractional Derivative in the Behavior of Real Materials , 1984 .

[10]  P. Wolkenfelt,et al.  The Construction of Reducible Quadrature Rules for Volterra Integral and Integro-differential Equations , 1982 .

[11]  J. Matthys,et al.  A-Stable linear multistep methods for Volterra Integro-Differential Equations , 1976 .

[12]  K. Diethelm,et al.  The Fracpece Subroutine for the Numerical Solution of Differential Equations of Fractional Order , 2002 .

[13]  N. Ford,et al.  Numerical and Analytical Treatment of Differential Equations of Fractional Order , 2001 .

[14]  Alan D. Freed,et al.  On the Solution of Nonlinear Fractional-Order Differential Equations Used in the Modeling of Viscoplasticity , 1999 .

[15]  Alain Roger Nkamnang Diskretisierung von mehrgliedrigen Abelschen Integralgleichungen und gewöhnlichen Differentialgleichungen gebrochener Ordnung , 1999 .

[16]  R. Gorenflo,et al.  AN OPERATIONAL METHOD FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS WITH THE CAPUTO DERIVATIVES , 1999 .

[17]  K. Diethelm AN ALGORITHM FOR THE NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER , 1997 .

[18]  E. Hairer,et al.  Solving ordinary differential equations h nonstiff problems , 1993 .

[19]  R. Bagley,et al.  Fractional order state equations for the control of viscoelasticallydamped structures , 1991 .

[20]  C. Lubich Convolution quadrature and discretized operational calculus. I , 1988 .

[21]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[22]  C. Lubich,et al.  A Stability Analysis of Convolution Quadraturea for Abel-Volterra Integral Equations , 1986 .

[23]  P. Wolkenfelt On the Numerical Stability of Reducible Quadrature Methods for Second Kind Volterra Integral Equations , 1981 .