Marked relative invariants and GW/PT correspondences

We introduce marked relative Pandharipande-Thomas (PT) invariants for a pair (X,D) of a smooth projective threefold and a smooth divisor. These invariants are defined by integration over the moduli space of r-marked stable pairs on (X,D), and appear naturally when degenerating diagonal insertions via the Li-Wu degeneration formula. We propose a Gromov-Witten (GW) / PT correspondence for marked relative invariants. We show compatibility of the conjecture with the degeneration formula and a splitting formula for relative diagonals. The results provide new tools to prove GW/PT correspondences for varieties with vanishing cohomology. As an application we prove the GW/PT correspondence for: (i) all Fano complete intersections, and (ii) the reduced theories of (S×C, S×{z1, . . . , zN}) where S is a K3 surface and C is a curve, for all curve classes which have divisibility at most 2 over the K3 surface. In the appendix we introduce a notion of higher-descendent invariants which can be seen as an analogue of the nodal Gromov-Witten invariants defined by Argüz, Bousseau, Pandharipande and Zvonkine in [2]. We show that the higher-descendent invariants reduce to marked relative invariants with diagonal insertions.

[1]  Jun Li Lecture Notes on Relative GW-invariants , 2022 .

[2]  Heisenberg algebra and Hilbert schemes of points on projective surfaces , 1995, alg-geom/9507012.

[3]  Richard P. Thomas,et al.  Deformation-obstruction theory for complexes via Atiyah and Kodaira–Spencer classes , 2008, 0805.3527.

[4]  D. Abramovich,et al.  Expanded Degenerations and Pairs , 2011, 1110.2976.

[5]  Henry Liu Quasimaps and stable pairs , 2021, Forum of Mathematics, Sigma.

[6]  G. Oberdieck Gromov–Witten invariants of the Hilbert schemes of points of a K3 surface , 2014, 1406.1139.

[7]  Richard P. Thomas,et al.  Curves on K3 surfaces and modular forms , 2010, 1001.2719.

[8]  A. Okounkov,et al.  Gromov-Witten/Donaldson-Thomas correspondence for toric 3-folds , 2008, 0809.3976.

[9]  Tim-Henrik Buelles,et al.  Curves on K3 surfaces in divisibility 2 , 2020, Forum of Mathematics, Sigma.

[10]  A. Okounkov,et al.  GW/PT Descendent Correspondence via Vertex Operators , 2018, Communications in Mathematical Physics.

[11]  D. Maulik,et al.  Quantum cohomology of the Hilbert scheme of points on A_n-resolutions , 2008, 0802.2737.

[12]  Jun Li Stable Morphisms to Singular Schemes and Relative Stable Morphisms , 2001 .

[13]  R. Pandharipande,et al.  Gromov–Witten/pairs descendent correspondence for toric 3–folds , 2012, 1203.0468.

[14]  Andrei Okounkov,et al.  Virasoro constraints for target curves , 2003 .

[15]  Quantum cohomology of the Hilbert scheme of points in the plane , 2004, math/0411210.

[16]  R. Pandharipande,et al.  Gromov-Witten theory and Noether-Lefschetz theory , 2007, 0705.1653.

[17]  B. Hassett Moduli spaces of weighted pointed stable curves , 2002, math/0205009.

[18]  The local Gromov-Witten theory of curves , 2004, math/0411037.

[19]  The enumerative geometry of K3 surfaces and modular forms , 1997, alg-geom/9711031.

[20]  Y. Manin,et al.  New moduli spaces of pointed curves and pencils of flat connections. , 2000, math/0001003.

[21]  The local Donaldson–Thomas theory of curves , 2005, math/0512573.

[22]  D. Maulik,et al.  Donaldson–Thomas theory of 𝒜n×P1 , 2008, Compositio Mathematica.

[23]  Johan P. Hansen,et al.  INTERSECTION THEORY , 2011 .

[24]  Relative virtual localization and vanishing of tautological classes on moduli spaces of curves , 2003, math/0309227.

[25]  R. Pandharipande,et al.  Gromov-Witten/pairs correspondence for the quintic 3-fold , 2012, 1206.5490.

[26]  A. Okounkov,et al.  Virasoro constraints for stable pairs on toric 3-folds , 2020, 2008.12514.

[27]  Franccois Greer Quasi-modular forms from mixed Noether-Lefschetz theory , 2018, Advances in Mathematics.

[28]  R. Pandharipande,et al.  Descendent theory for stable pairs on toric 3-folds , 2010, 1011.4054.

[29]  G. Oberdieck,et al.  Gromov–Witten theory of elliptic fibrations : Jacobi forms and holomorphic anomaly equations , 2017, Geometry & Topology.

[30]  Logarithmic Donaldson-Thomas theory , 2020, 2006.06603.

[31]  Richard P. Thomas,et al.  Reduced classes and curve counting on surfaces I: theory , 2011, 1112.3069.

[32]  Dhruv Ranganathan Logarithmic Gromov–Witten theory with expansions , 2019, Algebraic Geometry.

[33]  R. Pandharipande,et al.  Localization of virtual classes , 1997, alg-geom/9708001.

[34]  P. Alam ‘A’ , 2021, Composites Engineering: An A–Z Guide.

[35]  Iman Setayesh Relative Hilbert scheme of points , 2010, 1006.0011.

[36]  R. Pandharipande,et al.  Curve Counting on K3 × E, The Igusa Cusp Form χ10, and Descendent Integration , 2016 .

[37]  M. Gross,et al.  Logarithmic Gromov-Witten invariants , 2011, 1102.4322.

[38]  Hodge integrals and invariants of the unknot , 2003, math/0307209.

[39]  Jun Yu Li,et al.  Good degeneration of Quot-schemes and coherent systems , 2011, 1110.0390.

[40]  D. Maulik Gromov-Witten theory of A_n-resolutions , 2008, 0802.2681.

[41]  Qile Chen Stable logarithmic maps to Deligne-Faltings pairs I , 2010, 1008.3090.

[42]  Y. Kiem,et al.  Localizing virtual cycles by cosections , 2010, 1007.3085.

[43]  R. Pandharipande,et al.  Gromov–Witten theory and Donaldson–Thomas theory, I , 2003, Compositio Mathematica.

[44]  D. Huybrechts Lectures on K3 Surfaces , 2016 .

[45]  Richard P. Thomas,et al.  Curve counting via stable pairs in the derived category , 2007, 0707.2348.

[46]  A Degeneration Formula of GW-Invariants , 2001, math/0110113.

[47]  R. Pandharipande,et al.  HIGHER GENUS GROMOV–WITTEN THEORY OF Hilb(C2) AND CohFTs ASSOCIATED TO LOCAL CURVES , 2018 .

[48]  F. Qu,et al.  A product formula for log Gromov-Witten invariants , 2017, 1701.04527.

[49]  Luca Migliorini,et al.  The Chow Groups and the Motive of the Hilbert Scheme of Points on a Surface , 2000 .

[50]  Li Jun STABLE MORPHISMS TO SINGULAR SCHEMES AND RELATIVE STABLE MORPHISMS , 2008 .