Cold-start Active Learning with Robust Ordinal Matrix Factorization

We present a new matrix factorization model for rating data and a corresponding active learning strategy to address the cold-start problem. Cold-start is one of the most challenging tasks for recommender systems: what to recommend with new users or items for which one has little or no data. An approach is to use active learning to collect the most useful initial ratings. However, the performance of active learning depends strongly upon having accurate estimates of i) the uncertainty in model parameters and ii) the intrinsic noisiness of the data. To achieve these estimates we propose a heteroskedastic Bayesian model for ordinal matrix factorization. We also present a computationally efficient framework for Bayesian active learning with this type of complex probabilistic model. This algorithm successfully distinguishes between informative and noisy data points. Our model yields state-of-the-art predictive performance and, coupled with our active learning strategy, enables us to gain useful information in the cold-start setting from the very first active sample.

[1]  D. Lindley On a Measure of the Information Provided by an Experiment , 1956 .

[2]  David J. C. MacKay,et al.  Information-Based Objective Functions for Active Data Selection , 1992, Neural Computation.

[3]  A. Dawid,et al.  A comparison of sequential learning methods for incomplete data , 1995 .

[4]  Kate Ehrlich,et al.  Pointing the way: active collaborative filtering , 1995, CHI '95.

[5]  Jeffrey K. Uhlmann,et al.  New extension of the Kalman filter to nonlinear systems , 1997, Defense, Security, and Sensing.

[6]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[7]  Nello Cristianini,et al.  Query Learning with Large Margin Classi ersColin , 2000 .

[8]  Tom Minka,et al.  Expectation Propagation for approximate Bayesian inference , 2001, UAI.

[9]  Jon Lee Maximum entropy sampling , 2001 .

[10]  David M. Pennock,et al.  Methods and metrics for cold-start recommendations , 2002, SIGIR '02.

[11]  Richard S. Zemel,et al.  Multiple Cause Vector Quantization , 2002, NIPS.

[12]  Sean M. McNee,et al.  Getting to know you: learning new user preferences in recommender systems , 2002, IUI '02.

[13]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[14]  Luo Si,et al.  Flexible Mixture Model for Collaborative Filtering , 2003, ICML.

[15]  Craig Boutilier,et al.  Active Collaborative Filtering , 2002, UAI.

[16]  Luo Si,et al.  A Bayesian Approach toward Active Learning for Collaborative Filtering , 2004, UAI.

[17]  Wei Chu,et al.  Gaussian Processes for Ordinal Regression , 2005, J. Mach. Learn. Res..

[18]  Nathaniel Good,et al.  Naïve filterbots for robust cold-start recommendations , 2006, KDD '06.

[19]  John A. Johnson,et al.  The international personality item pool and the future of public-domain personality measures ☆ , 2006 .

[20]  Juha Karhunen,et al.  Principal Component Analysis for Large Scale Problems with Lots of Missing Values , 2007, ECML.

[21]  Robert J. Butera,et al.  Efficient active learning with generalized linear models , 2007, AISTATS.

[22]  Yiming Yang,et al.  Personalized active learning for collaborative filtering , 2008, SIGIR '08.

[23]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[24]  Hyung Jun Ahn,et al.  A new similarity measure for collaborative filtering to alleviate the new user cold-starting problem , 2008, Inf. Sci..

[25]  John Riedl,et al.  Learning preferences of new users in recommender systems: an information theoretic approach , 2008, SKDD.

[26]  C. Rasmussen,et al.  Approximations for Binary Gaussian Process Classification , 2008 .

[27]  Wei Chu,et al.  Information Services]: Web-based services , 2022 .

[28]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[29]  Thore Graepel,et al.  WWW 2009 MADRID! Track: Data Mining / Session: Statistical Methods Matchbox: Large Scale Online Bayesian Recommendations , 2022 .

[30]  Lars Schmidt-Thieme,et al.  BPR: Bayesian Personalized Ranking from Implicit Feedback , 2009, UAI.

[31]  Richard S. Zemel,et al.  Collaborative prediction and ranking with non-random missing data , 2009, RecSys '09.

[32]  J. Schneider,et al.  Bayesian Optimal Active Search on Graphs , 2011 .

[33]  Guillaume Bouchard,et al.  Robust Bayesian Matrix Factorisation , 2011, AISTATS.

[34]  Zoubin Ghahramani,et al.  Collaborative Gaussian Processes for Preference Learning , 2012, NIPS.

[35]  Ole Winther,et al.  A hierarchical model for ordinal matrix factorization , 2012, Stat. Comput..

[36]  Barnabás Póczos,et al.  Active learning and search on low-rank matrices , 2013, KDD.

[37]  Toon De Pessemier,et al.  MovieTweetings: a movie rating dataset collected from twitter , 2013, RecSys 2013.

[38]  T. Graepel,et al.  Private traits and attributes are predictable from digital records of human behavior , 2013, Proceedings of the National Academy of Sciences.