Separation of Synchronous Sources Through Phase Locked Matrix Factorization

In this paper, we study the separation of synchronous sources (SSS) problem, which deals with the separation of sources whose phases are synchronous. This problem cannot be addressed through independent component analysis methods because synchronous sources are statistically dependent. We present a two-step algorithm, called phase locked matrix factorization (PLMF), to perform SSS. We also show that SSS is identifiable under some assumptions and that any global minimum of PLMFs cost function is a desirable solution for SSS. We extensively study the algorithm on simulated data and conclude that it can perform SSS with various numbers of sources and sensors and with various phase lags between the sources, both in the ideal (i.e., perfectly synchronous and nonnoisy) case, and with various levels of additive noise in the observed signals and of phase jitter in the sources.

[1]  Lucas C. Parra,et al.  A SURVEY OF CONVOLUTIVE BLIND SOURCE SEPARATION METHODS , 2007 .

[2]  Lucas C. Parra,et al.  Convolutive Blind Source Separation Methods , 2008 .

[3]  Robert Oostenveld,et al.  Imaging the human motor system’s beta-band synchronization during isometric contraction , 2008, NeuroImage.

[4]  J. Palva,et al.  Phase Synchrony among Neuronal Oscillations in the Human Cortex , 2005, The Journal of Neuroscience.

[5]  Luigi Grippo,et al.  On the convergence of the block nonlinear Gauss-Seidel method under convex constraints , 2000, Oper. Res. Lett..

[6]  José M. Bioucas-Dias,et al.  Estimation of the Common Oscillation for Phase Locked Matrix Factorization , 2012, ICPRAM.

[7]  H. Sebastian Seung,et al.  Algorithms for Non-negative Matrix Factorization , 2000, NIPS.

[8]  José M. Bioucas-Dias,et al.  Independent Phase Analysis: Separating Phase-Locked Subspaces , 2010, LVA/ICA.

[9]  Christian Jutten,et al.  Blind separation of sources, part I: An adaptive algorithm based on neuromimetic architecture , 1991, Signal Process..

[10]  L. Atlas,et al.  Single-Channel Source Separation Using Complex Matrix Factorization , 2011, IEEE Transactions on Audio, Speech, and Language Processing.

[11]  Barnabás Póczos,et al.  Independent subspace analysis using geodesic spanning trees , 2005, ICML.

[12]  José M. Bioucas-Dias,et al.  Source Separation and Clustering of Phase-Locked Subspaces , 2011, IEEE Transactions on Neural Networks.

[13]  Andreas Ziehe,et al.  TDSEP { an e(cid:14)cient algorithm for blind separation using time structure , 1998 .

[14]  J. Karhunen,et al.  Advances in Nonlinear Blind Source Separation , 2003 .

[15]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[16]  Barnabás Póczos,et al.  Undercomplete Blind Subspace Deconvolution , 2007, J. Mach. Learn. Res..

[17]  B. Conway,et al.  Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. , 1995, The Journal of physiology.

[18]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[19]  Jose M. Bioucas-Dias,et al.  Phase-Locked Matrix Factorization with Estimation of the Common Oscillation , 2013 .

[20]  José M. Bioucas-Dias,et al.  Separation of phase-locked sources in pseudo-real MEG data , 2013, EURASIP J. Adv. Signal Process..

[21]  Steven H. Strogatz,et al.  Synchronization: A Universal Concept in Nonlinear Sciences , 2003 .

[22]  Pierre Comon,et al.  Independent component analysis, A new concept? , 1994, Signal Process..

[23]  Andrzej Cichocki,et al.  Adaptive Blind Signal and Image Processing - Learning Algorithms and Applications , 2002 .

[24]  José M. Bioucas-Dias,et al.  Phase Unwrapping via Graph Cuts , 2005, IEEE Transactions on Image Processing.

[25]  Patrik O. Hoyer,et al.  Non-negative Matrix Factorization with Sparseness Constraints , 2004, J. Mach. Learn. Res..

[26]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[27]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[28]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[29]  Jean-François Cardoso,et al.  Multidimensional independent component analysis , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[30]  José M. Bioucas-Dias,et al.  Phase Locked Matrix Factorization , 2011, 2011 19th European Signal Processing Conference.

[31]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[32]  Fabian J. Theis,et al.  Towards a general independent subspace analysis , 2006, NIPS.

[33]  Seungjin Choi,et al.  Independent Component Analysis , 2009, Handbook of Natural Computing.

[34]  José M. Bioucas-Dias,et al.  The Role of Whitening for Separation of Synchronous Sources , 2012, LVA/ICA.

[35]  Mit Press,et al.  Theory and Implementation of the Discrete Hilbert Transform , 1969 .

[36]  Kuldip K. Paliwal,et al.  Subspace independent component analysis using vector kurtosis , 2006, Pattern Recognit..

[37]  Mario Bertero,et al.  Introduction to Inverse Problems in Imaging , 1998 .

[38]  Pierre Comon,et al.  Handbook of Blind Source Separation: Independent Component Analysis and Applications , 2010 .

[39]  Hirokazu Kameoka,et al.  Complex NMF: A new sparse representation for acoustic signals , 2009, 2009 IEEE International Conference on Acoustics, Speech and Signal Processing.

[40]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[41]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .