On best possible order of convergence estimates in the collocation method and Galerkin's method for singularly perturbed boundary value problems for systems of first-order ordinary differential equations

The collocation method and Galerkin method using parabolic splines are considered. Special adaptive meshes whose number of knots is independent of the small parameter of the problem are used. Unimprovable estimates in the L∞-norm are obtained. For the Galerkin method these estimates are quasioptimal, while for the collocation method they are suboptimal.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  C. D. Boor,et al.  Collocation at Gaussian Points , 1973 .

[3]  Carl de Boor,et al.  A Practical Guide to Splines , 1978, Applied Mathematical Sciences.

[4]  Uri M. Ascher,et al.  Collocation for Singular Perturbation Problems I: First Order Systems with Constant Coefficients , 1981 .

[5]  L. R. Scott,et al.  Optimal ^{∞} estimates for the finite element method on irregular meshes , 1976 .

[6]  Uri M. Ascher,et al.  Collocation for Singular Perturbation Problems III: Nonlinear Problems without Turning Points , 1982 .

[7]  The projection method for singularly perturbed boundary-value problems , 1990 .

[8]  Richard Weiss An analysis of the box and trapezoidal schemes for linear singularly perturbed boundary value problems , 1984 .

[9]  Uri M. Ascher,et al.  Collocation for singular perturbation problems. II. Linear first order systems without turning points , 1984 .

[10]  Christian Ringhofer,et al.  On Collocation Schemes for Quasilinear Singularly Perturbed Boundary Value Problems , 1984 .

[11]  Uniform convergence of Galerkin’s method for splines on highly nonuniform meshes , 1977 .

[12]  U. Ascher,et al.  A collocation solver for mixed order systems of boundary value problems , 1979 .

[13]  The Galerkin method for singularly perturbed boundary value problems on adaptive grids , 1990 .

[14]  J. Nitsche,et al.  L∞-convergence of finite element approximations , 1977 .

[15]  C. R. Deboor,et al.  A practical guide to splines , 1978 .

[16]  L. Wahlbin,et al.  On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions , 1983 .

[17]  Frank Natterer,et al.  Über die punktweise Konvergenz Finiter Elemente , 1975 .