Computer simulation of the interface between two liquid crystalline phases in rod–plate binary mixtures

Metropolis Monte Carlo NVT computer simulations of 50:50 mixtures of L/D=5 hard spherocylinders (NHSC=510) and L/D=0.12 hard cut spheres (NCS=510) have been performed. At the start of the simulation, the system is taken as a totally demixed state of pure rods and pure plates. For a packing fraction of 44% the system is found to be a fully mixed isotropic state, while at 48% two ordered phases (one rich in rods and one rich in plates) are found to coexist. In this Letter we examine the stable free interface between the two liquid crystalline phases paying special attention to the orientational order through the interface.

[1]  Athanassios Z. Panagiotopoulos,et al.  Phase equilibria by simulation in the Gibbs ensemble , 1988 .

[2]  Daan Frenkel,et al.  Hard convex body fluids , 1993 .

[3]  R. Alben Liquid crystal phase transitions in mixtures of rodlike and platelike molecules , 1973 .

[4]  E. Miguel,et al.  COMPUTER SIMULATION STUDY OF THE FREE SURFACES OF A LIQUID CRYSTAL MODEL , 1997 .

[5]  C. Zannoni,et al.  Monte Carlo simulation of the nematic-vapour interface for a Gay-Berne liquid crystal , 1997 .

[6]  A. G. Vanakaras,et al.  Theory of Biaxial Nematic Ordering in Rod-Disc Mixtures Revisited , 1997 .

[7]  George Jackson,et al.  A RE-EXAMINATION OF THE PHASE DIAGRAM OF HARD SPHEROCYLINDERS , 1996 .

[8]  H. Lekkerkerker,et al.  Liquid-crystalline phase behavior of a colloidal rod-plate mixture. , 2000, Physical review letters.

[9]  D. Frenkel,et al.  Depletion effects in binary hard-sphere fluids , 1996 .

[10]  G. R. Luckhurst,et al.  The Molecular physics of liquid crystals , 1979 .

[11]  Frenkel,et al.  Evidence for entropy-driven demixing in hard-core fluids. , 1994, Physical review letters.

[12]  C. Zannoni,et al.  A molecular dynamics simulation study of the nematic–isotropic interface of a Gay–Berne liquid crystal , 1997 .

[13]  D. Frenkel,et al.  Demixing in hard ellipsoid rod-plate mixtures , 1997 .

[14]  Carlos Vega,et al.  A Fast Algorithm to Evaluate the Shortest Distance Between Rods , 1994, Comput. Chem..

[15]  D. Frenkel,et al.  Phase behavior of disklike hard-core mesogens. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[16]  G. Jackson,et al.  Hydrogen-bonding and Phase Biaxiality in Nematic Rod-Plate Mixtures , 1998 .

[17]  J. Deutch,et al.  Biaxial nematic phase, multiphase critical point, and reentry transition in binary liquid crystal mixtures , 1984 .

[18]  A. Chrzanowska BICRITICAL POINTS IN A NEMATIC ROD-DISK MIXTURE , 1998 .

[19]  C. M. Care,et al.  Computer simulation of an unconfined liquid crystal film , 1998 .

[20]  W. Gelbart,et al.  Phase Diagram Behaviors for Rod/Plate Liquid Crystal Mixtures , 1982 .

[21]  Michael P. Allen,et al.  Hard ellipsoid rod-plate mixtures: Onsager theory and computer simulations , 1996 .

[22]  M. Achard,et al.  Effect of Disc-Like Solute Size on the Orientational Order of a Nematogen , 1980 .

[23]  A. Saupe,et al.  Observation of a Biaxial Nematic Phase in Potassium Laurate-1-Decanol-Water Mixtures , 1980 .

[24]  A. Panagiotopoulos Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble , 1987 .