Slipped-strand mispairing at noncontiguous repeats in Poecilia reticulata: a model for minisatellite birth.

The standard slipped-strand mispairing (SSM) model for the formation of variable number tandem repeats (VNTRs) proposes that a few tandem repeats, produced by chance mutations, provide the "raw material" for VNTR expansion. However, this model is unlikely to explain the formation of VNTRs with long motifs (e.g., minisatellites), because the likelihood of a tandem repeat forming by chance decreases rapidly as the length of the repeat motif increases. Phylogenetic reconstruction of the birth of a mitochondrial (mt) DNA minisatellite in guppies suggests that VNTRs with long motifs can form as a consequence of SSM at noncontiguous repeats. VNTRs formed in this manner have motifs longer than the noncontiguous repeat originally formed by chance and are flanked by one unit of the original, noncontiguous repeat. SSM at noncontiguous repeats can therefore explain the birth of VNTRs with long motifs and the "imperfect" or "short direct" repeats frequently observed adjacent to both mtDNA and nuclear VNTRs.

[1]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[2]  H. Ellegren,et al.  Microsatellite evolution: polarity of substitutions within repeats and neutrality of flanking sequences , 1999, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[3]  E. Louis,et al.  Minisatellite origins in yeast and humans. , 1998, Genomics.

[4]  A. Meyer,et al.  Recurrent origin of a sexually selected trait in Xiphophorus fishes inferred from a molecular phylogeny , 1994, Nature.

[5]  W. Messier,et al.  The birth of microsatellites , 1996, Nature.

[6]  Cécile Fizames,et al.  A comprehensive genetic map of the human genome based on 5,264 microsatellites , 1996, Nature.

[7]  P. Taberlet,et al.  Origin and evolution of homologous repeated sequences in the mitochondrial DNA control region of shrews. , 1996, Molecular biology and evolution.

[8]  A. Torroni,et al.  mtDNA and the origin of Caucasians: identification of ancient Caucasian-specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. , 1994, American journal of human genetics.

[9]  G. Shadel,et al.  Mitochondrial DNA maintenance in vertebrates. , 1997, Annual review of biochemistry.

[10]  W. Davidson,et al.  Characterization of Novel Minisatellite Repeat Loci in Atlantic Salmon (Salmo salar) and Their Phylogenetic Distribution , 1998, Journal of Molecular Evolution.

[11]  A. Jeffreys,et al.  Comparative sequence analysis of human minisatellites showing meiotic repeat instability. , 1999, Genome research.

[12]  D. Tautz,et al.  Polymorphism and locus-specific effects on polymorphism at microsatellite loci in natural Drosophila melanogaster populations. , 1997, Genetics.

[13]  K. Jakobsen,et al.  Heteroplasmy, length and sequence variation in the mtDNA control regions of three percid fish species (Perca fluviatilis, Acerina cernua, Stizostedion lucioperca). , 1998, Genetics.

[14]  T. Giraud,et al.  The minisatellite MSB1, in the fungus Botrytis cinerea, probably mutates by slippage. , 1998, Molecular biology and evolution.

[15]  J. Mandel Breaking the rule of three , 1997, Nature.

[16]  D. Lunt,et al.  Mitochondrial DNA variable number tandem repeats (VNTRs): utility and problems in molecular ecology , 1998, Molecular ecology.

[17]  Ian C. Gray,et al.  Identification of the skeletal remains of a murder victim by DNA analysis , 1991, Nature.

[18]  F. Breden,et al.  MITOCHONDRIAL DNA SEQUENCE VARIATION AMONG NATURAL POPULATIONS OF THE TRINIDAD GUPPY, POECILIA RETICULATA , 1992, Evolution; international journal of organic evolution.

[19]  F. Breden,et al.  Molecular phylogeny of the live-bearing fish genus Poecilia (Cyprinodontiformes: Poeciliidae). , 1999, Molecular phylogenetics and evolution.

[20]  A. Meyer,et al.  Evolutionary conservation of microsatellite flanking regions and their use in resolving the phylogeny of cichlid fishes (Pisces: Perciformes) , 1996, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[21]  F. Breden,et al.  Phylogenetic relationships among the mollies (Poeciliidae: Poecilia: Mollienesia group) based on mitochondrial DNA sequences , 1998 .

[22]  L. Cavalli-Sforza,et al.  High resolution of human evolutionary trees with polymorphic microsatellites , 1994, Nature.

[23]  A. Beckenbach,et al.  Length variation, heteroplasmy and sequence divergence in the mitochondrial DNA of four species of sturgeon (Acipenser). , 1996, Genetics.

[24]  Genomic instability of microsatellite repeats and its association with the evolution of chronic myelogenous leukemia. , 1994, Blood.

[25]  B. Mevåg,et al.  Identification by DNA analysis of the victims of the August 1996 Spitsbergen civil aircraft disaster , 1997, Nature Genetics.

[26]  L. Bernatchez,et al.  Complex evolution of a salmonid microsatellite locus and its consequences in inferring allelic divergence from size information. , 1997, Molecular biology and evolution.

[27]  F. Breden,et al.  The death of a microsatellite: a phylogenetic perspective on microsatellite interruptions. , 1999, Molecular biology and evolution.

[28]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[29]  A. Meyer,et al.  Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[30]  A. Wilson,et al.  Nucleotide sequence and genomic organization of bird minisatellites. , 1989, Nucleic acids research.

[31]  G. Gutman,et al.  Slipped-strand mispairing: a major mechanism for DNA sequence evolution. , 1987, Molecular biology and evolution.

[32]  P. O'Hara,et al.  Length heteroplasmy of sturgeon mitochondrial DNA: an illegitimate elongation model. , 1990, Genetics.

[33]  Jen-Leih Wu,et al.  Variation in mitochondrial DNA and population structure of the Taipei treefrog Rhacophorus taipeianus in Taiwan , 1994, Molecular ecology.