Orientation-preserving transfer and directional light scattering from individual light-bending nanoparticles.

A nanocup, or semishell, is an asymmetric plasmonic "Janus" nanoparticle with electric and magnetic plasmon modes; the latter scatters light in a direction controlled by nanoparticle orientation, making it the nanoscale analog of a parabolic antenna. Here we report a method for transferring nanocups from their growth substrate to oxide-terminated substrates that precisely preserves their three-dimensional orientation, enabling their use as nanophotonic components. This enables us to selectively excite and probe the electric and magnetic plasmon modes of individual nanocups, showing how the scattered light depends on the direction of incoming light and the orientation of this nanoparticle antenna.

[1]  Federico Capasso,et al.  Self-Assembled Plasmonic Nanoparticle Clusters , 2010, Science.

[2]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[3]  John A. Rogers,et al.  Mechanically flexible thin-film transistors that use ultrathin ribbons of silicon derived from bulk wafers , 2006 .

[4]  Naomi J Halas,et al.  Light-bending nanoparticles. , 2009, Nano letters.

[5]  Peter Nordlander,et al.  Unidirectional broadband light emission from supported plasmonic nanowires. , 2011, Nano letters.

[6]  Optical properties of suspensions of gold half-shells , 2007 .

[7]  Yingzhou Huang,et al.  Directional light emission from propagating surface plasmons of silver nanowires. , 2009, Nano letters.

[8]  M. Cortie,et al.  A plasmon-induced current loop in gold semi-shells , 2007 .

[9]  Peter Nordlander,et al.  Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates† , 2010 .

[10]  J. Rogers,et al.  Additive, nanoscale patterning of metal films with a stamp and a surface chemistry mediated transfer process: Applications in plastic electronics , 2002 .

[11]  H. Giessen,et al.  Three-dimensional metamaterials at optical frequencies , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[12]  Nicolae C. Panoiu,et al.  Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies , 2003 .

[13]  N. Harris,et al.  Mie and Bragg plasmons in subwavelength silver semi-shells. , 2008, Small.

[14]  Federico Capasso,et al.  A technique to transfer metallic nanoscale patterns to small and non-planar surfaces. , 2009, ACS nano.

[15]  V. Shalaev Optical negative-index metamaterials , 2007 .

[16]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[17]  Kurt Busch,et al.  Three‐Dimensional Nanostructures for Photonics , 2010 .

[18]  Anthony B. Kos,et al.  Mapping substrate/film adhesion with contact-resonance-frequency atomic force microscopy , 2006 .

[19]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[20]  Peter Nordlander,et al.  Perforated semishells: far-field directional control and optical frequency magnetic response. , 2010, ACS nano.

[21]  N. Halas,et al.  Nanoparticle-induced enhancement and suppression of photocurrent in a silicon photodiode. , 2008, Nano letters.

[22]  George M. Whitesides,et al.  Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters , 2002 .

[23]  C. J. Brinker,et al.  Hydrolysis and condensation of silicates: Effects on structure , 1988 .

[24]  John A. Rogers,et al.  Fabricating semiconductor nano/microwires and transfer printing ordered arrays of them onto plastic substrates , 2004 .

[25]  John A Rogers,et al.  Interfacial chemistries for nanoscale transfer printing. , 2002, Journal of the American Chemical Society.

[26]  John A Rogers,et al.  Bulk quantities of single-crystal silicon micro-/nanoribbons generated from bulk wafers. , 2006, Nano letters.

[27]  John A Rogers,et al.  Competing fracture in kinetically controlled transfer printing. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[28]  M. Grundner,et al.  Investigations on hydrophilic and hydrophobic silicon (100) wafer surfaces by X-ray photoelectron and high-resolution electron energy loss-spectroscopy , 1986 .

[29]  John A. Rogers,et al.  Bendable GaAs metal-semiconductor field-effect transistors formed with printed GaAs wire arrays on plastic substrates , 2005 .

[30]  Nikolay I. Zheludev,et al.  Extrinsic electromagnetic chirality in metamaterials , 2009 .

[31]  D. P. Tsai,et al.  Toroidal Dipolar Response in a Metamaterial , 2010, Science.

[32]  U. Eigenthaler,et al.  Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. , 2010, Nano letters.

[33]  John A Rogers,et al.  Heterogeneous Three-Dimensional Electronics by Use of Printed Semiconductor Nanomaterials , 2006, Science.

[34]  C. E. Moran,et al.  Reduced symmetry metallodielectric nanoparticles: Chemical synthesis and plasmonic properties , 2003 .

[35]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .

[36]  M. Wegener,et al.  Magnetic Response of Metamaterials at 100 Terahertz , 2004, Science.

[37]  N. Halas,et al.  Reshaping the plasmonic properties of an individual nanoparticle. , 2009, Nano letters.

[38]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[39]  A. Geim,et al.  Nanofabricated media with negative permeability at visible frequencies , 2005, Nature.