Local distinguishability of multipartite unitary operations.

We show that any two different unitary operations acting on an arbitrary multipartite quantum system can be perfectly distinguished by local operations and classical communication when a finite number of runs is allowed. Intuitively, this result indicates that the lost identity of a nonlocal unitary operation can be recovered locally. No entanglement between distant parties is required.

[1]  Physical Review , 1965, Nature.

[2]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[3]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[4]  Isaac L. Chuang,et al.  Prescription for experimental determination of the dynamics of a quantum black box , 1997 .

[5]  John Preskill,et al.  Quantum information and precision measurement , 1999, quant-ph/9904021.

[6]  Vedral,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[7]  P. Zanardi,et al.  Entangling power of quantum evolutions , 2000, quant-ph/0005031.

[8]  Anthony Chefles Unambiguous discrimination between linearly dependent states with multiple copies , 2001, quant-ph/0105016.

[9]  G M D'Ariano,et al.  Using entanglement improves the precision of quantum measurements. , 2001, Physical review letters.

[10]  A. Acín Statistical distinguishability between unitary operations. , 2001, Physical review letters.

[11]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[12]  J I Cirac,et al.  Interaction cost of nonlocal gates. , 2001, Physical review letters.

[13]  A. Harrow,et al.  Quantum dynamics as a physical resource , 2002, quant-ph/0208077.

[14]  Masahide Sasaki,et al.  Retrodiction of generalized measurement outcomes , 2003 .

[15]  J. Oppenheim,et al.  Probabilistic and information-theoretic interpretation of quantum evolutions , 2003, quant-ph/0312149.

[16]  Massimiliano F. Sacchi,et al.  Optimal discrimination of quantum operations , 2005 .

[17]  Benni Reznik,et al.  Deterministic dense coding with partially entangled states , 2005 .

[18]  Yuan Feng,et al.  Identification and distance measures of measurement apparatus. , 2006, Physical review letters.

[19]  Mingsheng Ying,et al.  Unambiguous discrimination among quantum operations , 2006 .

[20]  K. Audenaert,et al.  Discriminating States: the quantum Chernoff bound. , 2006, Physical review letters.

[21]  Runyao Duan,et al.  Entanglement is not necessary for perfect discrimination between unitary operations. , 2007, Physical review letters.

[22]  Masahide Sasaki,et al.  Unambiguous discrimination among oracle operators , 2007, quant-ph/0702245.