Analytical Approximations for Nonlinear Diffusion Time in Multiscale Edge Enhancement

The image simplification, noise elimination and edge enhancement steps are all fundamental to segmentation tasks. These processing techniques usually require the tuning of their control parameters; a procedure known to be incompatible with automatic segmentation. The aim of this paper is to adopt a procedure, based on nonlinear diffusion, that is capable of auto tuning by means of analytical expressions that relate diffusion times to the gradient module. The numerical method and experimental results are shown in 1D, 2D and 3D.

[1]  Gabriel Asensio,et al.  Liver segmentation for hepatic lesions detection and characterisation , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[2]  J. Weickert,et al.  Locally analytic schemes: A link between diffusion filtering and wavelet shrinkage , 2008 .

[3]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  Max A. Viergever,et al.  Efficient and reliable schemes for nonlinear diffusion filtering , 1998, IEEE Trans. Image Process..

[5]  Stephen L. Keeling,et al.  Nonlinear anisotropic diffusion filters for wide range edge sharpening , 2000, Medical Imaging: Image Processing.

[6]  Michel Barlaud,et al.  Variational approach for edge-preserving regularization using coupled PDEs , 1998, IEEE Trans. Image Process..

[7]  Joachim Weickert,et al.  A semidiscrete nonlinear scale-space theory and its relation to the Perona - Malik paradox , 1996, TFCV.

[8]  Thomas Brox,et al.  On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs , 2004, SIAM J. Numer. Anal..

[9]  Satyanad Kichenassamy,et al.  The Perona-Malik Paradox , 1997, SIAM J. Appl. Math..

[10]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[11]  Jesús Ildefonso Díaz Díaz,et al.  Some qualitative properties for the total variation flow , 2002 .

[12]  P. Lions,et al.  Image selective smoothing and edge detection by nonlinear diffusion. II , 1992 .