On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part II: Uniqueness of the Overall Decomposition

Canonical polyadic (also known as Candecomp/Parafac) decomposition (CPD) of a higher-order tensor is decomposition into a minimal number of rank-$1$ tensors. In Part I, we gave an overview of existing results concerning uniqueness and presented new, relaxed, conditions that guarantee uniqueness of one factor matrix. In Part II we use these results for establishing overall CPD uniqueness in cases where none of the factor matrices has full column rank. We obtain uniqueness conditions involving Khatri--Rao products of compound matrices and Kruskal-type conditions. We consider both deterministic and generic uniqueness. We also discuss uniqueness of INDSCAL and other constrained polyadic decompositions.

[1]  XIJING GUO,et al.  Uni-mode and Partial Uniqueness Conditions for CANDECOMP/PARAFAC of Three-Way Arrays with Linearly Dependent Loadings , 2012, SIAM J. Matrix Anal. Appl..

[2]  A. Stegeman On uniqueness conditions for Candecomp/Parafac and Indscal with full column rank in one mode , 2009 .

[3]  Nikos D. Sidiropoulos,et al.  Almost sure identifiability of multidimensional harmonic retrieval , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[4]  Lieven De Lathauwer,et al.  A Link between the Canonical Decomposition in Multilinear Algebra and Simultaneous Matrix Diagonalization , 2006, SIAM J. Matrix Anal. Appl..

[5]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[6]  Lieven De Lathauwer,et al.  A short introduction to tensor-based methods for Factor Analysis and Blind Source Separation , 2011, 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA).

[7]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[8]  Lieven De Lathauwer,et al.  On the Uniqueness of the Canonical Polyadic Decomposition of Third-Order Tensors - Part I: Basic Results and Uniqueness of One Factor Matrix , 2013, SIAM J. Matrix Anal. Appl..

[9]  V. Strassen Rank and optimal computation of generic tensors , 1983 .

[10]  Nikos D. Sidiropoulos,et al.  Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays , 2001, IEEE Trans. Signal Process..

[11]  J. Berge,et al.  Typical rank and indscal dimensionality for symmetric three-way arrays of order I×2×2 or I×3×3 , 2004 .

[12]  Nikos D. Sidiropoulos,et al.  Kruskal's permutation lemma and the identification of CANDECOMP/PARAFAC and bilinear models with constant modulus constraints , 2004, IEEE Transactions on Signal Processing.

[13]  Alwin Stegeman,et al.  Kruskal's condition for uniqueness in Candecomp/Parafac when ranks and k , 2006, Comput. Stat. Data Anal..

[14]  J. Berge,et al.  Partial uniqueness in CANDECOMP/PARAFAC , 2004 .

[15]  J. K. Hunter,et al.  Measure Theory , 2007 .

[16]  Giorgio Ottaviani,et al.  On Generic Identifiability of 3-Tensors of Small Rank , 2011, SIAM J. Matrix Anal. Appl..

[17]  P. Comon,et al.  Tensor decompositions, alternating least squares and other tales , 2009 .

[18]  J. Kruskal Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics , 1977 .

[19]  Lieven De Lathauwer,et al.  Blind Separation of Exponential Polynomials and the Decomposition of a Tensor in Rank-(Lr, Lr, 1) Terms , 2011, SIAM J. Matrix Anal. Appl..

[20]  L. Lathauwer,et al.  Sufficient conditions for uniqueness in Candecomp/Parafac and Indscal with random component matrices , 2006, Psychometrika.

[21]  Wilhelmus Petrus Krijnen,et al.  The analysis of three-way arrays by constrained parafac methods , 1993 .