Tunnel effect and symmetries for Kramers–Fokker–Planck type operators
暂无分享,去创建一个
[1] Bernard Helffer,et al. Puits multiples en mecanique semi-classique iv etude du complexe de witten , 1985 .
[2] F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. , 2004 .
[3] F. Hérau,et al. Isotropic Hypoellipticity and Trend to Equilibrium for the Fokker-Planck Equation with a High-Degree Potential , 2004 .
[4] A. Bovier,et al. Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times , 2004 .
[5] Christiaan C. Stolk,et al. Semiclassical Analysis for the Kramers–Fokker–Planck Equation , 2004, math/0406275.
[6] J. Sjoestrand,et al. Spectra of PT-symmetric operators and perturbation theory , 2004, math-ph/0407052.
[7] F. Nier,et al. Hypoelliptic Estimates and Spectral Theory for Fokker-Planck Operators and Witten Laplacians , 2005 .
[8] Jean-Michel Bismut,et al. The hypoelliptic Laplacian on the cotangent bundle , 2005 .
[9] Kramers Equation and Supersymmetry , 2005, cond-mat/0503545.
[10] A. Bovier,et al. Metastability in reversible diffusion processes II. Precise asymptotics for small eigenvalues , 2005 .
[11] E.Caliceti,et al. $PT$ symmetric non-selfadjoint operators, diagonalizable and non-diagonalizable, with real discrete spectrum , 2007, 0705.4218.
[12] J. Sjöstrand,et al. symmetric non-self-adjoint operators, diagonalizable and non-diagonalizable, with a real discrete spectrum , 2007 .
[13] F. Hérau,et al. Tunnel Effect for Kramers–Fokker–Planck Type Operators , 2007, math/0703684.
[14] F. Hérau,et al. Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications , 2008, 0801.3615.
[15] D. L. Peutrec. Small singular values of an extracted matrix of a Witten complex , 2009 .
[16] Louis Boutet de Monvel,et al. Hypoelliptic operators with double characteristics and related pseudo-differential operators , 2010 .