A nonlinear low-Reynolds-number κ-ε model for turbulent separated and reattaching flows—I. Flow field computations

Abstract An improved version of nonlinear low-Reynolds-number κ-e model is developed. In this model, the limiting near-wall behavior and nonlinear Reynolds stress representations are incorporated. Emphasis is placed on the adoption of R y (κ 1 2 y v ) instead of γ+ ( ≡ τ y v ) in the low-Reynolds-number model for predicting turbulent separated and reattaching flows. The non-equilibrium effect is examined to describe recirculating flows away from the wall. The present model is validated by doing the benchmark problem of turbulent flow behind a backward-facing step. The predictions of the present model are cross-checked with the existing measurements and DNS data. The model performance is shown to be generally satisfactory.

[1]  Masato Tagawa,et al.  A two-equation heat transfer model for predicting turbulent thermal fields under arbitrary wall thermal conditions , 1992 .

[2]  Yasutaka Nagano,et al.  An improved k-epsilon model for boundary layer flows , 1990 .

[3]  James P. Johnston,et al.  Investigation of a Reattaching Turbulent Shear Layer: Flow Over a Backward-Facing Step , 1980 .

[4]  S. Corrsin,et al.  Experiments on nearly homogeneous turbulent shear flow , 1970, Journal of Fluid Mechanics.

[5]  John K. Eaton,et al.  A Review of Research on Subsonic Turbulent Flow Reattachment , 1981 .

[6]  R. Antonia Behaviour of the turbulent prandtl number near the wall , 1980 .

[7]  B. Launder,et al.  On the calculation of turbulent heat transport downstream from an abrupt pipe expansion , 1980 .

[8]  Ken-ichi Abe,et al.  A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flows—I. Flow field calculations , 1995 .

[9]  R. M. C. So,et al.  Low-Reynolds-number modelling of flows over a backward-facing step , 1988 .

[10]  John K. Eaton,et al.  Combined Heat Transfer and Fluid Dynamic Measurements Downstream of a Backward-Facing Step , 1985 .

[11]  Charles G. Speziale,et al.  ANALYTICAL METHODS FOR THE DEVELOPMENT OF REYNOLDS-STRESS CLOSURES IN TURBULENCE , 1990 .

[12]  D. B. Spalding,et al.  Turbulent shear flows , 1980 .

[13]  Stephen B. Pope Consistent modeling of scalars in turbulent flows , 1983 .

[14]  Parviz Moin,et al.  Transport of Passive Scalars in a Turbulent Channel Flow , 1989 .

[15]  P. Moin,et al.  Direct numerical simulation of turbulent flow over a backward-facing step , 1997, Journal of Fluid Mechanics.

[16]  V. C. Patel,et al.  Turbulence models for near-wall and low Reynolds number flows - A review , 1985 .

[17]  P. Moin,et al.  Reynolds-stress and dissipation-rate budgets in a turbulent channel flow , 1987, Journal of Fluid Mechanics.

[18]  Sandip Dutta,et al.  HEAT TRANSFER AND FLOW PAST A BACKSTEP WITH THE NONLINEAR k-∈ TURBULENCE MODEL AND THE MODIFIED k-∈ TURBULENCE MODEL , 1993 .

[19]  E. W. Adams,et al.  FLOW STRUCTURE IN THE NEAR-WALL ZONE OF A TURBULENT SEPARATED FLOW , 1988 .

[20]  Yasutaka Nagano,et al.  A Two-Equation Model for Heat Transport in Wall Turbulent Shear Flows , 1988 .

[21]  Wolfgang Rodi,et al.  The prediction of free turbulent boundary layers by use of a two-equation model of turbulence , 1973 .

[22]  TWO-LAYER-MODEL PREDICTIONS OF HEAT TRANSFER INSIDE ENHANCED TUBES , 1994 .

[23]  C. Yap Turbulent heat and momentum transfer in recirculating and impinging flows , 1987 .

[24]  A. Townsend,et al.  Decay of turbulence in the final period , 1948, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  M. W. Collins,et al.  k-ε Predictions of Heat Transfer in Turbulent Recirculating Flows Using an Improved Wall Treatment , 1989 .

[26]  Robert Rubinstein,et al.  Nonlinear Reynolds stress models and the renormalization group , 1990 .

[27]  Klaus Bremhorst,et al.  A Modified Form of the k-ε Model for Predicting Wall Turbulence , 1981 .

[28]  Antonio C. M. Sousa,et al.  Numerical Simulation of Turbulent Shear Flow in an Isothermal Heat Exchanger Model , 1990 .

[29]  N. Kasagi,et al.  Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow , 1992 .

[30]  H. Sung,et al.  Four-Equation Turbulence Model for Prediction of the Turbulent Boundary Layer affected by Buoyancy Force over a Flat Plate , 1984 .

[31]  Peter N. Joubert,et al.  A boundary layer developing in an increasingly adverse pressure gradient , 1974, Journal of Fluid Mechanics.

[32]  H. L. Seegmiller,et al.  Features of a reattaching turbulent shear layer in divergent channel flow , 1985 .

[33]  K. Horiuti,et al.  Higher‐order terms in the anisotropic representation of Reynolds stresses , 1990 .

[34]  A. J. Reynolds The prediction of turbulent Prandtl and Schmidt numbers , 1975 .

[35]  B. Launder,et al.  Ground effects on pressure fluctuations in the atmospheric boundary layer , 1978, Journal of Fluid Mechanics.

[36]  Brian Launder,et al.  On the Computation of Convective Heat Transfer in Complex Turbulent Flows , 1988 .

[37]  Wolfgang Rodi,et al.  Low Reynolds number k—ε modelling with the aid of direct simulation data , 1993, Journal of Fluid Mechanics.