Estimation of relative phycoerythrin concentrations from hyperspectral underwater radiance measurements––A statistical approach

[1] Phycobiliproteins are a family of water-soluble pigment proteins that play an important role as accessory or antenna pigments and absorb in the green part of the light spectrum poorly used by chlorophyll a. The phycoerythrins (PEs) are one of four types of phycobiliproteins that are generally distinguished based on their absorption properties. As PEs are water soluble, they are generally not captured with conventional pigment analysis. Here we present a statistical model based on in situ measurements of three transatlantic cruises which allows us to derive relative PE concentration from standardized hyperspectral underwater radiance measurements (Lu). The model relies on Empirical Orthogonal Function (EOF) analysis of Lu spectra and, subsequently, a Generalized Linear Model with measured PE concentrations as the response variable and EOF loadings as predictor variables. The method is used to predict relative PE concentrations throughout the water column and to calculate integrated PE estimates based on those profiles.

[1]  J. West,et al.  Phycoerythrins as chemotaxonomic markers in red algae: A survey , 1982 .

[2]  M. Wyman An in vivo method for the estimation of phycoerythrin concentrations in marine cyanobacteria (Synechoccus spp.) , 1992 .

[3]  K. Mopper,et al.  Fluorescence contouring analysis of DOC intercalibration experiment samples: a comparison of techniques , 1993 .

[4]  Daniel Vaulot,et al.  Phytoplankton Cell Counting by Flow Cytometry , 2005 .

[5]  S. Neuer,et al.  In situ characterization of phytoplankton from vertical profiles of fluorescence emission spectra , 1993 .

[6]  K. Hoef-Emden MOLECULAR PHYLOGENY OF PHYCOCYANIN‐CONTAINING CRYPTOPHYTES: EVOLUTION OF BILIPROTEINS AND GEOGRAPHICAL DISTRIBUTION 1 , 2008, Journal of phycology.

[7]  Robert F. Cahalan,et al.  Sampling Errors in the Estimation of Empirical Orthogonal Functions , 1982 .

[8]  H. Gordon,et al.  Phytoplankton Pigments from the Nimbus-7 Coastal Zone Color Scanner: Comparisons with Surface Measurements , 1980, Science.

[9]  M. Kronick,et al.  The use of phycobiliproteins as fluorescent labels in immunoassay. , 1986, Journal of immunological methods.

[10]  J. Waterbury,et al.  An Unusual Phycoerythrin from a Marine Cyanobacterium , 1984, Science.

[11]  R. Maccoll,et al.  Cyanobacterial phycobilisomes , 1998, Journal of structural biology.

[12]  Cécile Dupouy,et al.  Spectral diversity of phycoerythrins and diazotroph abundance in tropical waters , 2006 .

[13]  Paul G. Falkowski,et al.  Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. I. Absorption and photosynthetic action spectra , 1999 .

[14]  J. Waterbury,et al.  Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium , 1979, Nature.

[15]  Jaume Piera,et al.  Bio-optical provinces in the eastern Atlantic Ocean and their biogeographical relevance , 2011 .

[16]  D. Siegel,et al.  Modes and mechanisms of ocean color variability in the Santa Barbara Channel , 2001 .

[17]  C. S. French,et al.  THE FLUORESCENCE SPECTRA OF RED ALGAE AND THE TRANSFER OF ENERGY FROM PHYCOERYTHRIN TO PHYCOCYANIN AND CHLOROPHYLL , 1952, The Journal of general physiology.

[18]  Christopher T. Jones,et al.  Deriving optical metrics of coastal phytoplankton biomass from ocean colour , 2012 .

[19]  M. Estrada,et al.  Phycobiliprotein distribution across the western Mediterranean divergence , 1988 .

[20]  A. Chekalyuk,et al.  Advanced laser fluorometry of natural aquatic environments , 2008 .

[21]  D. Vaulot,et al.  Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review , 1999 .

[22]  Frank E. Hoge,et al.  Photosynthetic accessory pigments - Evidence for the influence of phycoerythrin on the submarine light field , 1990 .

[23]  I. Peeken,et al.  Different reactions of Southern Ocean phytoplankton size classes to iron fertilization , 2006 .

[24]  J. Mueller,et al.  Ocean color spectra measured off the Oregon coast: characteristic vectors. , 1976, Applied optics.

[25]  H. Loisel,et al.  Variability and classification of remote sensing reflectance spectra in the eastern English Channel and southern North Sea , 2007 .

[26]  Martin Ostrowski,et al.  Diversity and evolution of phycobilisomes in marine Synechococcus spp.: a comparative genomics study , 2007, Genome Biology.

[27]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[28]  N. Mann,et al.  The Oceanic Cyanobacterial Picoplankton , 1994 .

[29]  A. Glazer,et al.  Phycoerythrins of marine unicellular cyanobacteria. I. Bilin types and locations and energy transfer pathways in Synechococcus spp. phycoerythrins. , 1991, The Journal of biological chemistry.

[30]  Raymond C. Smith,et al.  The Analysis Of Ocean Optical Data , 1984, Other Conferences.

[31]  L. Stal,et al.  Nitrogen fixation along a north‐south transect in the eastern Atlantic Ocean , 2007 .

[32]  R. Olson,et al.  Analysis of Synechococcus pigment types in the sea using single and dual beam flow cytometry , 1988 .

[33]  T. Cowles,et al.  Multiple excitation fluorometer for in situ oceanographic applications. , 1997, Applied optics.

[34]  J. Huisman,et al.  Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea , 2009, The ISME Journal.

[35]  D. Scanlan,et al.  Molecular ecology of the marine cyanobacterial genera Prochlorococcus and Synechococcus. , 2002, FEMS microbiology ecology.

[36]  F. Lantoine,et al.  Vertical structure of picophytoplankton at different trophic sites of the tropical northeastern Atlantic Ocean , 1996 .

[37]  Edward J. Carpenter,et al.  Trichodesmium, a Globally Significant Marine Cyanobacterium , 1997 .

[38]  D. Phinney,et al.  Water column transparency and the distribution of spectrally distinct forms of phycoerythrin- containing organisms , 1998 .

[39]  Collin S. Roesler,et al.  New insights on obtaining phytoplankton concentration and composition from in situ multispectral Chlorophyll fluorescence , 2010 .

[40]  R. Olson,et al.  Pigments, size, and distributions of Synechococcus in the North Atlantic and Pacific Oceans , 1990 .

[41]  B. Palenik Chromatic Adaptation in MarineSynechococcus Strains , 2001, Applied and Environmental Microbiology.

[42]  H. Dau,et al.  A fluorometric method for the differentiation of algal populations in vivo and in situ , 2004, Photosynthesis Research.

[43]  P. Pepin,et al.  Monitoring changes in phytoplankton abundance and composition in the Northwest Atlantic: a comparison of results obtained by continuous plankton recorder sampling and colour satellite imagery , 2010 .

[44]  M. Wyman,et al.  Novel Role for Phycoerythrin in a Marine Cyanobacterium, Synechococcus Strain DC2 , 1985, Science.

[45]  A. Morel Consequences of a Synechococcus bloom upon the optical properties of oceanic (case 1) waters , 1997 .

[46]  F. Lantoine,et al.  Spatial and seasonal variations in abundance and spectral characteristics of phycoerythrins in the tropical northeastern Atlantic Ocean , 1997 .

[47]  Mi-Young Lee,et al.  Isolation and characterization of a new phycoerythrin from the cyanobacterium Synechococcus sp. ECS-18 , 2011, Journal of Applied Phycology.

[48]  R R Jonker,et al.  Design and first results of CytoBuoy: a wireless flow cytometer for in situ analysis of marine and fresh waters. , 1999, Cytometry.

[49]  E. Gantt,et al.  Phycobiliprotein localization in algae. , 1966, Brookhaven symposia in biology.

[50]  G. Tarran,et al.  Picoplanktonic community structure on an Atlantic transect from 50°N to 50°S , 1998 .

[51]  Robert J. Olson,et al.  An automated submersible flow cytometer for analyzing pico- and nanophytoplankton: FlowCytobot , 2003 .

[52]  R. Iturriaga,et al.  Chroococcoid cyanobacteria: a significant component in the food web dynamics of the open ocean , 1986 .

[53]  A. Wood,et al.  Phycoerythrin evolution and diversification of spectral phenotype in marine Synechococcus and related picocyanobacteria. , 2012, Molecular phylogenetics and evolution.

[54]  C. McClain A decade of satellite ocean color observations. , 2009, Annual review of marine science.

[55]  U. Hansen,et al.  Algorithms and practical fluorescence models of the photosynthetic apparatus of red cyanobacteria and Cryptophyta designed for the fluorescence detection of red cyanobacteria and cryptophytes , 2004 .

[56]  C. W. Wright,et al.  Spatial variability of oceanic phycoerythrin spectral types derived from airborne laser-induced fluorescence emissions. , 1998, Applied optics.

[57]  K. Rowan,et al.  The biliproteins of the Cryptophyceae , 1989 .

[58]  S. Jacquet,et al.  Application of a submersible spectrofluorometer for rapid monitoring of freshwater cyanobacterial blooms: a case study , 2002 .

[59]  T. Hansen Bergey's Manual of Systematic Bacteriology , 2005 .

[60]  R. Goericke,et al.  Laser fluorescence analysis of phytoplankton across a frontal zone in the California Current ecosystem , 2012 .

[61]  P. Pepin,et al.  Spatial and inter-decadal variability in plankton abundance and composition in the Northwest Atlantic (1958–2006) , 2010 .

[62]  W. Sidler,et al.  Phycobilisome and Phycobiliprotein Structures , 1994 .

[63]  S. Saitoh,et al.  Bio-optical characteristics of the western Arctic Ocean: implications for ocean color algorithms , 2007 .

[64]  Jean-Marc Nicolas,et al.  Seasonal and interannual variability of ocean color and composition of phytoplankton communities in the North Atlantic, equatorial Pacific and South Pacific , 2004 .

[65]  J. Hall,et al.  A sensitive fluorometric technique for the measurement of phycobilin pigments and its application to the study of marine and freshwater picophytoplankton in oligotrophic environments , 1998, Journal of Applied Phycology.

[66]  J. Seppälä,et al.  Spectral absorption and fluorescence characteristics of phytoplankton in different size fractions across a salinity gradient in the Baltic Sea , 2005 .

[67]  A. Wood,et al.  COMPARATIVE MOLECULAR EVOLUTION OF NEWLY DISCOVERED PICOCYANOBACTERIAL STRAINS REVEALS A PHYLOGENETICALLY INFORMATIVE VARIABLE REGION OF β-PHYCOERYTHRIN1 , 2006 .