Advanced processing of EBSD data to distinguish the complex microstructure evolution of a Cu-Ni-Si alloy induced by fatigue

[1]  L. Wagner,et al.  Influence of grain size and precipitation hardening on high cycle fatigue performance of CuNiSi alloys , 2017 .

[2]  J. Vogt,et al.  Low cycle fatigue behaviour of a precipitation hardened Cu-Ni-Si alloy , 2016 .

[3]  A. Bewick,et al.  The Application of the AZtec EBSD System to the Study of Strain in the SEM , 2016, Microscopy and Microanalysis.

[4]  A. Chamos,et al.  Fractographical analysis of fatigue failed Cu–2.55Ni–0.55Si alloy , 2016 .

[5]  S. Zaefferer,et al.  A comparison of EBSD based strain indicators for the study of Fe-3Si steel subjected to cyclic loading , 2016 .

[6]  C. Watanabe,et al.  Effects of Small Addition of Ti on Strength and Microstructure of a Cu-Ni-Si Alloy , 2015, Metallurgical and Materials Transactions A.

[7]  A. Weidner,et al.  Case studies on the application of high-resolution electron channelling contrast imaging – investigation of defects and defect arrangements in metallic materials , 2015 .

[8]  Hou-Gaung Chen,et al.  Effects of heat treatment processes on the microstructures and properties of powder metallurgy produced Cu–Ni–Si–Cr alloy , 2014 .

[9]  X. Sauvage,et al.  Strengthening of Cu–Ni–Si alloy using high-pressure torsion and aging , 2014 .

[10]  T. Baudin,et al.  Microstructures and textures of a Cu–Ni–Si alloy processed by high-pressure torsion , 2013 .

[11]  N. Schmidt,et al.  Improving the Accuracy of Orientation Measurements using EBSD , 2013, Microscopy and Microanalysis.

[12]  J. H. Lee,et al.  Effect of V addition on hardness and electrical conductivity in Cu-Ni-Si alloys , 2013, Metals and Materials International.

[13]  B. Xiong,et al.  Microstructure and properties of Cu–2.8Ni–0.6Si alloy , 2013, Rare Metals.

[14]  Zhou Li,et al.  Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu–Ni–Si alloy , 2013 .

[15]  B. Bacroix,et al.  Electron backscatter diffraction investigation of local misorientations and orientation gradients in connection with evolution of grain boundary structures in deformed and annealed zirconium. A new approach in grain boundary analysis , 2013 .

[16]  A. Jha,et al.  Microstructure and Properties of a High-Strength Cu-Ni-Si-Co-Zr Alloy , 2013, Journal of Materials Engineering and Performance.

[17]  Jingping Liu,et al.  The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys , 2013 .

[18]  A. Wilkinson,et al.  Measurement of geometrically necessary dislocation density with high resolution electron backscatter diffraction: effects of detector binning and step size. , 2013, Ultramicroscopy.

[19]  J. Vogt,et al.  Fatigue Damage Assessment of Alternator Fans by EBSD , 2013 .

[20]  N. Tsuji,et al.  Improvement in Mechanical Properties of a Cu–2.0 mass%Ni–0.5 mass%Si–0.1 mass%Zr Alloy by Combining Both Accumulative Roll-Bonding and Cryo-Rolling with Aging , 2013 .

[21]  H. Roven,et al.  Optimization of EBSD parameters for ultra‐fast characterization , 2012, Journal of microscopy.

[22]  Matthew M Nowell,et al.  A Review of Strain Analysis Using Electron Backscatter Diffraction , 2011, Microscopy and Microanalysis.

[23]  S. Onaka,et al.  Cyclic Softening of Cu-Ni-Si Alloy Single Crystals under Low-Cycle Fatigue , 2010 .

[24]  M. Calcagnotto,et al.  Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD , 2010 .

[25]  Zhi-you Li,et al.  Microstructure and properties of high-conductivity, super-high-strength Cu–8.0Ni–1.8Si–0.6Sn–0.15Mg alloy , 2009 .

[26]  C. Watanabe,et al.  Microstructure and mechanical properties of Cu–Ni–Si alloys , 2008 .

[27]  C. Watanabe,et al.  Mechanical Properties of Cu-4.0wt%Ni-0.95wt%Si Alloys with and without P and Cr Addition , 2007 .

[28]  M. Preuss,et al.  Local Plastic Strain Measurement by EBSD , 2007 .

[29]  A. Wilkinson,et al.  Characterizing dislocation structure evolution during cyclic deformation using electron channelling contrast imaging , 2006 .

[30]  Y. Waseda,et al.  Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling , 2006 .

[31]  S. Wright,et al.  EBSD Image Quality Mapping , 2005, Microscopy and Microanalysis.

[32]  V. Uhlenwinkel,et al.  Effect of thermomechanical treatment on spray formed Cu – Ni – Si alloy , 2004 .

[33]  Dongmei Zhao,et al.  Aging behavior of Cu-Ni-Si alloy , 2003 .

[34]  Jusheng Ma,et al.  Precipitation in Cu–Ni–Si–Zn alloy for lead frame , 2003 .

[35]  S. Hong,et al.  Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe alloy , 2000 .

[36]  S. Lockyer,et al.  Fatigue of precipitate strengthened Cu–Ni–Si alloy , 1999 .

[37]  S. Lockyer,et al.  Precipitate structure in a Cu-Ni-Si alloy , 1994 .

[38]  Y. G. Kim,et al.  Effect of heat treatment on precipitation behaviour in a Cu-Ni-Si-P alloy , 1986 .