Strong Normalization from Weak Normalization in Typed Lambda-Calculi

For some typed?-calculi it is easier to prove weak normalization than strong normalization. Techniques to infer the latter from the former have been invented over the last twenty years by Nederpelt, Klop, Khasidashvili, Karr, de Groote, and Kfoury and Wells. However, these techniques infer strong normalization of one notion of reduction from weak normalization of amore complicatednotion of reduction. This paper presents a new technique to infer strong normalization of a notion of reduction in a typed?-calculus from weak normalization of thesamenotion of reduction. The technique is demonstrated to work on some well-known systems including second-order?-calculus and the system of positive, recursive types. It gives hope for a positive answer to the Barendregt?Geuvers conjecture stating that every pure type system which is weakly normalizing is also strongly normalizing. The paper also analyzes the relationship between the techniques mentioned above, and reviews, in less detail, other techniques for proving strong normalization.

[1]  Fairouz Kamareddine,et al.  A useful ?-notation , 1996 .

[2]  Fairouz Kamareddine,et al.  A reduction relation for which postponement of K-contractions, Conservation and Preservation of Stro , 1996 .

[3]  Andrzej Filinski,et al.  Representing monads , 1994, POPL '94.

[4]  Eugenio Moggi,et al.  Notions of Computation and Monads , 1991, Inf. Comput..

[5]  William A. Howard,et al.  Ordinal analysis of terms of finite type , 1980, Journal of Symbolic Logic.

[6]  A. Troelstra Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .

[7]  Roel C. de Vrijer A Direct Proof of the Finite Developments Theorem , 1985, J. Symb. Log..

[8]  Morten Heine Sørensen Efficient Longest and Infinite Reduction Paths in Untyped Lambda-Calculi , 1996, CAAP.

[9]  Hongwei Xi,et al.  On weak and strong normalisations , 1996 .

[10]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[11]  Eugenio Moggi,et al.  Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.

[12]  Pawel Urzyczyn,et al.  Positive Recursive Type Assignment , 1995, Fundam. Informaticae.

[13]  Mark Lillibridge,et al.  Explicit polymorphism and CPS conversion , 1993, POPL '93.

[14]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[15]  Ronald L. Graham,et al.  On η-valued functionally complete truth functions , 1967, Journal of Symbolic Logic.

[16]  Assaf J. Kfoury,et al.  New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[17]  D. Prawitz Natural Deduction: A Proof-Theoretical Study , 1965 .

[18]  Fairouz Kamareddine,et al.  The Barendregt Cube with Definitions and Generalised Reduction , 1996, Inf. Comput..

[19]  Fairouz Kamareddine,et al.  Refining Reduction in the Lambda Calculus , 1995, J. Funct. Program..

[20]  Amr Sabry,et al.  Reasoning about programs in continuation-passing style , 1992, LFP '92.

[21]  William A. Howard,et al.  The formulae-as-types notion of construction , 1969 .

[22]  W. Tait A realizability interpretation of the theory of species , 1975 .

[23]  Tobias Nipkow,et al.  Higher-Order Algebra, Logic, and Term Rewriting , 1993, Lecture Notes in Computer Science.

[24]  Jaco van de Pol Two Different Strong Normalization Proofs? , 1995, HOA.

[25]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[26]  de Ng Dick Bruijn,et al.  A survey of the project Automath , 1980 .

[27]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[28]  Assaf J. Kfoury,et al.  A direct algorithm for type inference in the rank-2 fragment of the second-order λ-calculus , 1994, LFP '94.

[29]  Albert R. Meyer,et al.  Continuation Semantics in Typed Lambda-Calculi (Summary) , 1985, Logic of Programs.

[30]  Zurab Khasidashvili The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems , 1994, LFCS.

[31]  Zurab Khasidashvili Perpetuality and Strong Normalization in Orthogonal Term Rewriting Systems , 1994, STACS.

[32]  Jaco van de Pol,et al.  Termination Proofs for Higher-order Rewrite Systems , 1993, HOA.

[33]  Daniel Leivant,et al.  Syntactic translations and provably recursive functions , 1985, Journal of Symbolic Logic.

[34]  J. Roger Hindley,et al.  Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.

[35]  William W. Tait,et al.  Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.

[36]  John C. Reynolds,et al.  The discoveries of continuations , 1993, LISP Symb. Comput..

[37]  Jerzy Tiuryn,et al.  Type Reconstruction in Finite Rank Fragments of the Second-Order lambda-Calculus , 1992, Inf. Comput..

[38]  Rob Nederpelt,et al.  A useful lambda notation , 1992 .

[39]  D. Vidal,et al.  Nouvelles notions de réduction en lambda-calcul : Application à la réalisation d'un langage fonctionnel fondé sur la réduction forte , 1989 .

[40]  J. Girard,et al.  Proofs and types , 1989 .

[41]  Thierry Coquand,et al.  A - Translation and Looping Combinators in Pure Type Systems , 1994, J. Funct. Program..

[42]  J. H. Geuvers Logics and type systems , 1993 .

[43]  J. Gallier On Girard's "Candidats de Reductibilité" , 1989 .

[44]  Fairouz Kamareddine,et al.  Generalized -reduction and Explicit Substitutions , 1996 .

[45]  Matthias Felleisen,et al.  A call-by-need lambda calculus , 1995, POPL '95.

[46]  Helmut Schwichtenberg,et al.  An upper bound for reduction sequences in the typed λ-calculus , 1991, Arch. Math. Log..

[47]  E. Barendsen,et al.  Types and computations in lambda calculi and graph rewrite systems , 1995 .

[48]  Olivier Danvy,et al.  For a Better Support of Static Data Flow , 1991, FPCA.

[49]  Jean-Louis Krivine,et al.  Lambda-calculus, types and models , 1993, Ellis Horwood series in computers and their applications.

[50]  J. Springintveld,et al.  Lower and upper bounds for reductions of types in λω and λP , 1992 .

[51]  Hongwei Xi,et al.  An Induction Measure on A-terms and Its Applications , 1996 .

[52]  Piergiorgio Odifreddi,et al.  Logic and computer science , 1990 .

[53]  Timothy G. Griffin,et al.  A formulae-as-type notion of control , 1989, POPL '90.

[54]  Vincent van Oostrom,et al.  Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..

[55]  Michael Karr "Delayability" in Proofs of Strong Normalizability in the Typed Lambda Calculus , 1985, TAPSOFT, Vol.1.

[56]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[57]  Bullet,et al.  DEGREES , REDUCTIONS AND REPRESENTABILITY IN THE LAMBDA CALCULUS , .

[58]  John C. Mitchell,et al.  Type inference with simple subtypes , 1991, Journal of Functional Programming.

[59]  Jan A. Bergstra,et al.  Strong Normalization and Perpetual Reductions in the Lambda Calculus , 1982, J. Inf. Process. Cybern..

[60]  Philippe de Groote,et al.  The Conservation Theorem revisited , 1993, TLCA.

[61]  Jerzy Tiuryn,et al.  An analysis of ML typability , 1994, JACM.

[62]  Laurent Regnier,et al.  Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..

[63]  Helmat Schwichtenberg,et al.  Complexity of Normalization in the Pure Typed Lambda – Calculus , 1982 .

[64]  Fairouz Kamareddine,et al.  A unified approach to type theory through a refined lambda-calculus , 1992 .