Strong Normalization from Weak Normalization in Typed Lambda-Calculi
暂无分享,去创建一个
[1] Fairouz Kamareddine,et al. A useful ?-notation , 1996 .
[2] Fairouz Kamareddine,et al. A reduction relation for which postponement of K-contractions, Conservation and Preservation of Stro , 1996 .
[3] Andrzej Filinski,et al. Representing monads , 1994, POPL '94.
[4] Eugenio Moggi,et al. Notions of Computation and Monads , 1991, Inf. Comput..
[5] William A. Howard,et al. Ordinal analysis of terms of finite type , 1980, Journal of Symbolic Logic.
[6] A. Troelstra. Metamathematical investigation of intuitionistic arithmetic and analysis , 1973 .
[7] Roel C. de Vrijer. A Direct Proof of the Finite Developments Theorem , 1985, J. Symb. Log..
[8] Morten Heine Sørensen. Efficient Longest and Infinite Reduction Paths in Untyped Lambda-Calculi , 1996, CAAP.
[9] Hongwei Xi,et al. On weak and strong normalisations , 1996 .
[10] Jan Willem Klop,et al. Combinatory reduction systems , 1980 .
[11] Eugenio Moggi,et al. Computational lambda-calculus and monads , 1989, [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science.
[12] Pawel Urzyczyn,et al. Positive Recursive Type Assignment , 1995, Fundam. Informaticae.
[13] Mark Lillibridge,et al. Explicit polymorphism and CPS conversion , 1993, POPL '93.
[14] Henk Barendregt,et al. The Lambda Calculus: Its Syntax and Semantics , 1985 .
[15] Ronald L. Graham,et al. On η-valued functionally complete truth functions , 1967, Journal of Symbolic Logic.
[16] Assaf J. Kfoury,et al. New notions of reduction and non-semantic proofs of strong /spl beta/-normalization in typed /spl lambda/-calculi , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.
[17] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[18] Fairouz Kamareddine,et al. The Barendregt Cube with Definitions and Generalised Reduction , 1996, Inf. Comput..
[19] Fairouz Kamareddine,et al. Refining Reduction in the Lambda Calculus , 1995, J. Funct. Program..
[20] Amr Sabry,et al. Reasoning about programs in continuation-passing style , 1992, LFP '92.
[21] William A. Howard,et al. The formulae-as-types notion of construction , 1969 .
[22] W. Tait. A realizability interpretation of the theory of species , 1975 .
[23] Tobias Nipkow,et al. Higher-Order Algebra, Logic, and Term Rewriting , 1993, Lecture Notes in Computer Science.
[24] Jaco van de Pol. Two Different Strong Normalization Proofs? , 1995, HOA.
[25] Viggo Stoltenberg-hansen,et al. In: Handbook of Logic in Computer Science , 1995 .
[26] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[27] Gordon D. Plotkin,et al. Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..
[28] Assaf J. Kfoury,et al. A direct algorithm for type inference in the rank-2 fragment of the second-order λ-calculus , 1994, LFP '94.
[29] Albert R. Meyer,et al. Continuation Semantics in Typed Lambda-Calculi (Summary) , 1985, Logic of Programs.
[30] Zurab Khasidashvili. The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems , 1994, LFCS.
[31] Zurab Khasidashvili. Perpetuality and Strong Normalization in Orthogonal Term Rewriting Systems , 1994, STACS.
[32] Jaco van de Pol,et al. Termination Proofs for Higher-order Rewrite Systems , 1993, HOA.
[33] Daniel Leivant,et al. Syntactic translations and provably recursive functions , 1985, Journal of Symbolic Logic.
[34] J. Roger Hindley,et al. Introduction to combinators and λ-calculus , 1986, Acta Applicandae Mathematicae.
[35] William W. Tait,et al. Intensional interpretations of functionals of finite type I , 1967, Journal of Symbolic Logic.
[36] John C. Reynolds,et al. The discoveries of continuations , 1993, LISP Symb. Comput..
[37] Jerzy Tiuryn,et al. Type Reconstruction in Finite Rank Fragments of the Second-Order lambda-Calculus , 1992, Inf. Comput..
[38] Rob Nederpelt,et al. A useful lambda notation , 1992 .
[39] D. Vidal,et al. Nouvelles notions de réduction en lambda-calcul : Application à la réalisation d'un langage fonctionnel fondé sur la réduction forte , 1989 .
[40] J. Girard,et al. Proofs and types , 1989 .
[41] Thierry Coquand,et al. A - Translation and Looping Combinators in Pure Type Systems , 1994, J. Funct. Program..
[42] J. H. Geuvers. Logics and type systems , 1993 .
[43] J. Gallier. On Girard's "Candidats de Reductibilité" , 1989 .
[44] Fairouz Kamareddine,et al. Generalized -reduction and Explicit Substitutions , 1996 .
[45] Matthias Felleisen,et al. A call-by-need lambda calculus , 1995, POPL '95.
[46] Helmut Schwichtenberg,et al. An upper bound for reduction sequences in the typed λ-calculus , 1991, Arch. Math. Log..
[47] E. Barendsen,et al. Types and computations in lambda calculi and graph rewrite systems , 1995 .
[48] Olivier Danvy,et al. For a Better Support of Static Data Flow , 1991, FPCA.
[49] Jean-Louis Krivine,et al. Lambda-calculus, types and models , 1993, Ellis Horwood series in computers and their applications.
[50] J. Springintveld,et al. Lower and upper bounds for reductions of types in λω and λP , 1992 .
[51] Hongwei Xi,et al. An Induction Measure on A-terms and Its Applications , 1996 .
[52] Piergiorgio Odifreddi,et al. Logic and computer science , 1990 .
[53] Timothy G. Griffin,et al. A formulae-as-type notion of control , 1989, POPL '90.
[54] Vincent van Oostrom,et al. Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..
[55] Michael Karr. "Delayability" in Proofs of Strong Normalizability in the Typed Lambda Calculus , 1985, TAPSOFT, Vol.1.
[56] J. Roger Hindley,et al. To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .
[57] Bullet,et al. DEGREES , REDUCTIONS AND REPRESENTABILITY IN THE LAMBDA CALCULUS , .
[58] John C. Mitchell,et al. Type inference with simple subtypes , 1991, Journal of Functional Programming.
[59] Jan A. Bergstra,et al. Strong Normalization and Perpetual Reductions in the Lambda Calculus , 1982, J. Inf. Process. Cybern..
[60] Philippe de Groote,et al. The Conservation Theorem revisited , 1993, TLCA.
[61] Jerzy Tiuryn,et al. An analysis of ML typability , 1994, JACM.
[62] Laurent Regnier,et al. Une équivalence sur les lambda-termes , 1994, Theor. Comput. Sci..
[63] Helmat Schwichtenberg,et al. Complexity of Normalization in the Pure Typed Lambda – Calculus , 1982 .
[64] Fairouz Kamareddine,et al. A unified approach to type theory through a refined lambda-calculus , 1992 .