Wavelet-based orientation of localizable Gaussian fields

In this work we give a sense to the notion of orientation for self-similar Gaussian fields with stationary increments, based on monogenic wavelet analysis of these fields, with isotropic Riesz wavelets. We compute the covariance of the random wavelet coefficients, which leads to a new formulation for the structure tensor and provides an intrinsic definition of the orientation vector as eigenvector of this tensor. We show that the orientation vector does not depend on the choice of the mother wavelet, nor the scale, but only on the anisotropy encoded in the spectral density of the field. Then we generalize this definition to a larger class of random fields called localizable Gaussian fields, whose orientation is derived from the orientation of their tangent fields. Two classes of Gaussian models with prescribed orientation are studied in the light of these new analysis tools.

[1]  Laurent Condat,et al.  Mod\'elisations de textures par champ gaussien \`a orientation locale prescrite , 2015, 1503.06716.

[2]  Laurent Condat,et al.  Texture modeling by Gaussian fields with prescribed local orientation , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[3]  Michael Unser,et al.  A Unifying Parametric Framework for 2D Steerable Wavelet Transforms , 2013, SIAM J. Imaging Sci..

[4]  Valérie Perrier,et al.  The Monogenic Synchrosqueezed Wavelet Transform: A tool for the Decomposition/Demodulation of AM-FM images , 2012, ArXiv.

[5]  F. Sommen,et al.  Phase Derivative of Monogenic Signals in Higher Dimensional Spaces , 2012 .

[6]  Dimitri Van De Ville,et al.  Steerable pyramids and tight wavelet frames in L 2 ( R d ) , 2011 .

[7]  Dimitri Van De Ville,et al.  Lung Texture Classification Using Locally-Oriented Riesz Components , 2011, MICCAI.

[8]  R. Bass,et al.  Review: P. Billingsley, Convergence of probability measures , 1971 .

[9]  M. Taqqu,et al.  Regularization and integral representations of Hermite processes , 2010 .

[10]  Brigitte Forster-Heinlein,et al.  Steerable Wavelet Frames Based on the Riesz Transform , 2010, IEEE Transactions on Image Processing.

[11]  Dimitri Van De Ville,et al.  Multiresolution Monogenic Signal Analysis Using the Riesz–Laplace Wavelet Transform , 2009, IEEE Transactions on Image Processing.

[12]  Emmanuel Papadakis,et al.  The geometry and the analytic properties of isotropic multiresolution analysis , 2009, Adv. Comput. Math..

[13]  Xiongzhi Chen Brownian Motion and Stochastic Calculus , 2008 .

[14]  Identifying the Anisotropical Function of a d-Dimensional Gaussian Self-similar Process with Stationary Increments , 2007 .

[15]  Gabriel Peyré,et al.  Oriented Patterns Synthesis , 2007 .

[16]  David A. Benson,et al.  Aquifer operator scaling and the effect on solute mixing and dispersion , 2006 .

[17]  Thierry Blu,et al.  Isotropic polyharmonic B-splines: scaling functions and wavelets , 2005, IEEE Transactions on Image Processing.

[18]  From N parameter fractional Brownian motions to N parameter multifractional Brownian motions , 2005, math/0503182.

[19]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[20]  Ioannis A. Kakadiaris,et al.  Nonseparable Radial Frame Multiresolution Analysis in Multidimensions , 2003 .

[21]  K. Falconer The Local Structure of Random Processes , 2003 .

[22]  Anne Estrade,et al.  Anisotropic Analysis of Some Gaussian Models , 2003 .

[23]  K. Falconer Tangent Fields and the Local Structure of Random Fields , 2002 .

[24]  Michael Felsberg,et al.  Low-level image processing with the structure multivector , 2002 .

[25]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[26]  Rachid Harba,et al.  Analyse de champs browniens fractionnaires anisotropes , 2001 .

[27]  O. Perrin,et al.  Reducing non-stationary random fields to stationarity and isotropy using a space deformation , 2000 .

[28]  O. Perrin,et al.  Reducing non-stationary stochastic processes to stationarity by a time deformation , 1999 .

[29]  S. Jaffard,et al.  Elliptic gaussian random processes , 1997 .

[30]  R. Peltier,et al.  Multifractional Brownian Motion : Definition and Preliminary Results , 1995 .

[31]  T. Lindstrøm,et al.  FRACTIONAL BROWNIAN FIELDS AS INTEGRALS OF WHITE NOISE , 1993 .

[32]  S. Ishikawa Generalized Hilbert Transforms in Tempered Distributions , 1987 .

[33]  J. Bigun,et al.  Optimal Orientation Detection of Linear Symmetry , 1987, ICCV 1987.

[34]  R. Dobrushin Gaussian and their Subordinated Self-similar Random Generalized Fields , 1979 .

[35]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[36]  B. Mandelbrot,et al.  Fractional Brownian Motions, Fractional Noises and Applications , 1968 .

[37]  Sumiyuki Koizumi ON THE HILBERT TRANSFORM I , 1959 .

[38]  A. Yaglom Some Classes of Random Fields in n-Dimensional Space, Related to Stationary Random Processes , 1957 .