Birationally rigid Fano fibre spaces. II

We prove the birational rigidity of large classes of Fano–Mori fibre spaces over a base of arbitrary dimension bounded above by a constant that depends only on the dimension of the fibres. To do this, we first show that if every fibre of a Fano–Mori fibre space satisfies certain natural conditions, then every birational map onto another such space is fibrewise. Then we construct large classes of fibre spaces (whose fibres are either Fano double spaces of index 1 or Fano hypersurfaces of index 1) satisfying these conditions.

[1]  C. Ciliberto,et al.  Automorphisms in Birational and Affine Geometry , 2014 .

[2]  T. Eckl,et al.  On the Locus of Nonrigid Hypersurfaces , 2014 .

[3]  A. Pukhlikov Birationally Rigid Varieties , 2013 .

[4]  T. Eckl,et al.  On the locus of non-rigid hypersurfaces , 2012, 1210.3715.

[5]  A. Pukhlikov Birational Geometry of Algebraic Varieties with a Pencil of Fano Cyclic Covers , 2009 .

[6]  A. Pukhlikov Birational geometry of singular Fano varieties , 2008, 0807.3886.

[7]  A. Pukhlikov Birational geometry of Fano double covers , 2007, 0712.0078.

[8]  I. Cheltsov Fano varieties with many selfmaps , 2006, math/0611881.

[9]  A. Pukhlikov Birational geometry of algebraic varieties with a pencil of Fano complete intersections , 2005, math/0511090.

[10]  A. Pukhlikov Birational geometry of Fano direct products , 2004, math/0405011.

[11]  A. Pukhlikov Birationally rigid varieties with a pencil of Fano double covers. III , 2004 .

[12]  A. Pukhlikov Birationally rigid varieties with a pencil of double Fano covers. I , 2004 .

[13]  A.V.Pukhlikov Birationally rigid varieties with a pencil of Fano double covers. II , 2004, math/0403211.

[14]  M. Grinenko Mori structures on a Fano threefold of index 2 and degree 1 , 2004 .

[15]  Александр Валентинович Пухликов,et al.  Бирационально жесткие многообразия с пучком двойных накрытий Фано. III@@@Birationally rigid varieties with a pencil of Fano double covers. III , 2004 .

[16]  A. Pukhlikov Birationally rigid varieties with a pencil of Fano double covers. I , 2003, math/0510168.

[17]  M. Grinenko On a double cone over a Veronese surface , 2003 .

[18]  M M Grinenko Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II , 2003 .

[19]  Михаил Михайлович Гриненко,et al.  О двойном конусе над поверхностью Веронезе@@@On a double cone over a Veronese surface , 2003 .

[20]  I. V. Sobolev,et al.  Birational automorphisms of a?class of varieties fibred into cubic surfaces , 2002 .

[21]  Игорь Вадимович Соболев,et al.  Бирациональные автоморфизмы одного класса многообразий, расслоенных на кубические поверхности@@@Birational automorphisms of a class of varieties fibred into cubic surfaces , 2002 .

[22]  I. V. Sobolev On a series of birationally rigid varieties with a pencil of Fano hypersurfaces , 2001 .

[23]  Aleksandr V. Pukhlikov,et al.  Birationally rigid Fano complete intersections , 2001 .

[24]  Игорь Вадимович Соболев,et al.  Об одной серии бирационально жестких многообразий с пучком гиперповерхностей Фано@@@On a series of birationally rigid varieties with a pencil of Fano hypersurfaces , 2001 .

[25]  A. Pukhlikov Birationally rigid Fano fibrations , 2000 .

[26]  M. Grinenko Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2 , 2000, math/0002252.

[27]  Михаил Михайлович Гриненко,et al.  Бирациональные свойства пучков поверхностей дель Пеццо степеней 1 и 2. II@@@Birational properties of pencils of del Pezzo surfaces of degrees 1 and 2. II , 2000 .

[28]  Александр Валентинович Пухликов,et al.  Бирационально жесткие расслоения Фано@@@Birationally rigid Fano fibrations , 2000 .

[29]  M. Reid,et al.  Explicit birational geometry of 3-folds , 2000 .

[30]  A. Corti Explicit Birational Geometry of 3-Folds: Singularities of linear systems and 3-fold birational geometry , 2000 .

[31]  A. Pukhlikov Birational automorphisms of Fano hypersurfaces , 1998 .

[32]  A. Pukhlikov Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces , 1998 .

[33]  Александр Валентинович Пухликов,et al.  Бирациональные автоморфизмы трехмерных алгебраических многообразий с пучком поверхностей дель Пеццо@@@Birational automorphisms of algebraic threefolds with a pencil of Del Pezzo surfaces , 1998 .

[34]  J. Kollár Flips and Abundance for Algebraic Threefolds , 1992 .

[35]  V. G. Sarkisov ON CONIC BUNDLE STRUCTURES , 1983 .

[36]  V. G. Sarkisov BIRATIONAL AUTOMORPHISMS OF CONIC BUNDLES , 1981 .

[37]  V. A. Iskovskikh Birational automorphisms of three-dimensional algebraic varieties , 1980 .

[38]  I︠u︡. I. Manin,et al.  Cubic forms; algebra, geometry, arithmetic , 1974 .

[39]  Ju. Manin,et al.  THREE-DIMENSIONAL QUARTICS AND COUNTEREXAMPLES TO THE LÜROTH PROBLEM , 1971 .

[40]  M. Gizatullin ON AFFINE SURFACES THAT CAN BE COMPLETED BY A NONSINGULAR RATIONAL CURVE , 1970 .

[41]  V A Iskovskih,et al.  RATIONAL SURFACES WITH A PENCIL OF RATIONAL CURVES AND WITH POSITIVE SQUARE OF THE CANONICAL CLASS , 1970 .

[42]  V A Iskovskih,et al.  RATIONAL SURFACES WITH A PENCIL OF RATIONAL CURVES , 1967 .

[43]  Ju. Manin,et al.  RATIONAL SURFACES OVER PERFECT FIELDS. II , 1967 .

[44]  Юрий Иванович Манин Рациональные Пове рхности Над Соверщенными Полями , 1966 .

[45]  Ju. Manin,et al.  Rational surfaces over perfect fields , 1966 .

[46]  Miles Reid,et al.  Cremona transformations : in plane and space , 1928 .