Divergence-conforming methods for transient doubly-diffusive flows: A priori and a posteriori error analysis

The analysis of the double-diffusion model and H(div)-conforming method introduced in [Bürger, Méndez, Ruiz-Baier, SINUM (2019), 57:1318–1343] is extended to the time-dependent case. In addition, the efficiency and reliability analysis of residual-based a posteriori error estimators for the steady, semi-discrete, and fully discrete problems is established. The resulting methods are applied to simulate the sedimentation of small particles in salinity-driven flows. The method consists of Brezzi-Douglas-Marini approximations for velocity and compatible piecewise discontinuous pressures, whereas Lagrangian elements are used for concentration and salinity distribution. Numerical tests confirm the properties of the proposed family of schemes and of the adaptive strategy guided by the a posteriori error indicators.

[1]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[2]  Numerical analysis of reaction front propagation model under Boussinesq approximation , 2003 .

[3]  Rolf Stenberg,et al.  H(div)-conforming Finite Elements for the Brinkman Problem , 2011 .

[4]  Ionut Danaila,et al.  A Newton method with adaptive finite elements for solving phase-change problems with natural convection , 2014, J. Comput. Phys..

[5]  Yanren Hou,et al.  A posteriori error estimation and adaptive computation of conduction convection problems , 2011 .

[6]  Koffi Wilfrid Houédanou An a posteriori error analysis for a coupled continuum pipe-flow/Darcy model in Karst aquifers: Anisotropic and isotropic discretizations , 2017, Results in Applied Mathematics.

[7]  Neela Nataraj,et al.  An A Posteriori Error Analysis of Mixed Finite Element Galerkin Approximations to Second Order Linear Parabolic Problems , 2012, SIAM J. Numer. Anal..

[8]  C. Bernardi,et al.  A posteriori analysis of a space and time discretization of a nonlinear model for the flow in partially saturated porous media , 2014 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Ohannes A. Karakashian,et al.  A Nonconforming Finite Element Method for the Stationary Navier--Stokes Equations , 1998 .

[11]  F. Hecht,et al.  A posteriori error estimates for Darcy’s problem coupled with the heat equation , 2019, ESAIM: Mathematical Modelling and Numerical Analysis.

[12]  Daniel Arndt,et al.  Stabilized Finite Element Methods for the Oberbeck–Boussinesq Model , 2016, J. Sci. Comput..

[13]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[14]  Mats G. Larson,et al.  Adaptive finite element approximation of coupled flow and transport problems with applications in heat transfer , 2008 .

[15]  Ionut Danaila,et al.  A finite-element toolbox for the simulation of solid-liquid phase-change systems with natural convection , 2020, Comput. Phys. Commun..

[16]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[17]  E. Meiburg,et al.  Sediment-laden fresh water above salt water: nonlinear simulations , 2014, Journal of Fluid Mechanics.

[18]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[19]  Frédéric Hecht,et al.  A full discretisation of the time-dependent Boussinesq (buoyancy) model with nonlinear viscosity , 2018, Calcolo.

[20]  Alejandro Allendes,et al.  Stabilized finite element approximations for a generalized Boussinesq problem: A posteriori error analysis , 2020 .

[21]  Tong Zhang,et al.  A posteriori error estimates of finite element method for the time-dependent Navier-Stokes equations , 2017, Appl. Math. Comput..

[22]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[23]  Ricardo Ruiz-Baier,et al.  A posteriori error estimation for an augmented mixed-primal method applied to sedimentation-consolidation systems , 2018, J. Comput. Phys..

[24]  Ricardo Ruiz-Baier,et al.  Stability and finite element approximation of phase change models for natural convection in porous media , 2019, J. Comput. Appl. Math..

[25]  Yao-Lin Jiang,et al.  An explicitly uncoupled VMS stabilization finite element method for the time-dependent Darcy-Brinkman equations in double-diffusive convection , 2017, Numerical Algorithms.

[26]  Rahma Agroum A posteriori error analysis for solving the Navier‐Stokes problem and convection‐diffusion equation , 2018 .

[27]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[28]  Karam Allali A PRIORI AND A POSTERIORI ERROR ESTIMATES FOR BOUSSINESQ EQUATIONS , 2005 .

[29]  E. Meiburg,et al.  Layer formation in sedimentary fingering convection , 2016, Journal of Fluid Mechanics.

[30]  Ricardo Ruiz-Baier,et al.  Partitioned coupling of advection-diffusion-reaction systems and Brinkman flows , 2017, J. Comput. Phys..

[31]  Christine Bernardi,et al.  Spectral discretization of the time-dependent Navier-Stokes problem coupled with the heat equation , 2015, Appl. Math. Comput..

[32]  Rüdiger Verführt,et al.  A review of a posteriori error estimation and adaptive mesh-refinement techniques , 1996, Advances in numerical mathematics.

[33]  Thomas Richter,et al.  Solving Multidimensional Reactive Flow Problems with Adaptive Finite Elements , 2007 .

[34]  Ricardo Ruiz-Baier,et al.  On a primal-mixed, vorticity-based formulation for reaction-diffusion-Brinkman systems , 2016 .

[35]  Raimund Bürger,et al.  On H(div)-conforming Methods for Double-diffusion Equations in Porous Media , 2019, SIAM J. Numer. Anal..

[36]  A. Fortin,et al.  A two-dimensional adaptive remeshing method for solving melting and solidification problems with convection , 2019, Numerical Heat Transfer, Part A: Applications.

[37]  Mary F. Wheeler,et al.  A discontinuous Galerkin method with nonoverlapping domain decomposition for the Stokes and Navier-Stokes problems , 2004, Math. Comput..

[38]  Simulation of incompressible flows with heat and mass transfer using parallel finite element method , 2003 .

[39]  Roland Becker,et al.  Solution of a stationary benchmark problem for natural convection with large temperature difference , 2002 .

[40]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[41]  Nicholas Zabaras,et al.  A stabilized volume‐averaging finite element method for flow in porous media and binary alloy solidification processes , 2004 .

[42]  Omar Lakkis,et al.  A Posteriori Error Control for Discontinuous Galerkin Methods for Parabolic Problems , 2008, SIAM J. Numer. Anal..

[43]  E. Bänsch,et al.  A posteriori estimates for the two-step backward differentiation formula and discrete regularity for the time-dependent Stokes equations , 2019 .

[44]  Julia Kowalski,et al.  Monolithic simulation of convection-coupled phase-change - verification and reproducibility , 2017, ArXiv.

[45]  Hantaek Bae Navier-Stokes equations , 1992 .