Evolutionary optimization in uncertain environments-a survey

Evolutionary algorithms often have to solve optimization problems in the presence of a wide range of uncertainties. Generally, uncertainties in evolutionary computation can be divided into the following four categories. First, the fitness function is noisy. Second, the design variables and/or the environmental parameters may change after optimization, and the quality of the obtained optimal solution should be robust against environmental changes or deviations from the optimal point. Third, the fitness function is approximated, which means that the fitness function suffers from approximation errors. Fourth, the optimum of the problem to be solved changes over time and, thus, the optimizer should be able to track the optimum continuously. In all these cases, additional measures must be taken so that evolutionary algorithms are still able to work satisfactorily. This paper attempts to provide a comprehensive overview of the related work within a unified framework, which has been scattered in a variety of research areas. Existing approaches to addressing different uncertainties are presented and discussed, and the relationship between the different categories of uncertainties are investigated. Finally, topics for future research are suggested.

[1]  W. Carpenter,et al.  A comparison of polynomial approximations and artificial neural nets as response surfaces , 1993 .

[2]  Sung-Bae Cho,et al.  An efficient genetic algorithm with less fitness evaluation by clustering , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[3]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[4]  Rajkumar Roy,et al.  Multi-objective Optimisation Of Rolling Rod Product Design Using Meta-modelling Approach , 2002, GECCO.

[5]  Andreas Zell,et al.  Model-Assisted Steady-State Evolution Strategies , 2003, GECCO.

[6]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[7]  B. Julstrom,et al.  Design of vector quantization codebooks using a genetic algorithm , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[8]  Mark Wineberg,et al.  Enhancing the GA's Ability to Cope with Dynamic Environments , 2000, GECCO.

[9]  Min-Jea Tahk,et al.  Acceleration of the convergence speed of evolutionary algorithms using multi-layer neural networks , 2003 .

[10]  S. Ranji Ranjithan,et al.  Chance-constrained genetic algorithms , 1999 .

[11]  Xin Yao,et al.  A new evolutionary system for evolving artificial neural networks , 1997, IEEE Trans. Neural Networks.

[12]  Ian C. Parmee,et al.  Techniques to aid global search in engineering design , 1994, IEA/AIE '94.

[13]  Indraneel Das,et al.  ROBUSTNESS OPTIMIZATION FOR CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS , 2000 .

[14]  Bernard De Baets,et al.  Is Fitness Inheritance Useful for Real-World Applications? , 2003, EMO.

[15]  Jürgen Branke,et al.  Creating Robust Solutions by Means of Evolutionary Algorithms , 1998, PPSN.

[16]  Edward A. Silver,et al.  Tabu Search When Noise is Present: An Illustration in the Context of Cause and Effect Analysis , 1998, J. Heuristics.

[17]  Hajime Kita,et al.  Adaptation to Changing Environments by Means of the Memory Based Thermodynamical Genetic Algorithm , 1997, ICGA.

[18]  Thomas Bäck,et al.  Robust design of multilayer optical coatings by means of evolutionary algorithms , 1998, IEEE Trans. Evol. Comput..

[19]  Walter J. Gutjahr,et al.  A Converging ACO Algorithm for Stochastic Combinatorial Optimization , 2003, SAGA.

[20]  Arnold Neumaier,et al.  Molecular Modeling of Proteins and Mathematical Prediction of Protein Structure , 1997, SIAM Rev..

[21]  T. Simpson,et al.  Comparative studies of metamodeling techniques under multiple modeling criteria , 2000 .

[22]  Hajime Kita,et al.  Optimization of Noisy Fitness Functions by Means of Genetic Algorithms Using History of Search , 2000, PPSN.

[23]  Helen D. Karatza,et al.  Dynamic Sequencing of A Multi-Processor System: A Genetic Algorithm Approach , 1993 .

[24]  Michael Guntsch,et al.  Applying Population Based ACO to Dynamic Optimization Problems , 2002, Ant Algorithms.

[25]  Bernhard Sendhoff,et al.  Reducing Fitness Evaluations Using Clustering Techniques and Neural Network Ensembles , 2004, GECCO.

[26]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Some Asymptotical Results from the (1,+ )-Theory , 1993, Evolutionary Computation.

[27]  Tetsuo Morimoto,et al.  An intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithms , 1997 .

[28]  Hajime Kita,et al.  Online optimization of an engine controller by means of a genetic algorithm using history of search , 2000, 2000 26th Annual Conference of the IEEE Industrial Electronics Society. IECON 2000. 2000 IEEE International Conference on Industrial Electronics, Control and Instrumentation. 21st Century Technologies.

[29]  Benjamin W. Wah,et al.  Scheduling of Genetic Algorithms in a Noisy Environment , 1994, Evolutionary Computation.

[30]  David E. Goldberg,et al.  Genetic Algorithms, Selection Schemes, and the Varying Effects of Noise , 1996, Evolutionary Computation.

[31]  Wolfgang Banzhaf,et al.  Decreasing the Number of Evaluations in Evolutionary Algorithms by Using a Meta-model of the Fitness Function , 2003, EuroGP.

[32]  Narayan Raman,et al.  The job shop tardiness problem: A decomposition approach , 1993 .

[33]  Bernhard Sendhoff,et al.  Structure optimization of neural networks for evolutionary design optimization , 2005, Soft Comput..

[34]  T. W. Layne,et al.  A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models , 1998 .

[35]  A. Zell,et al.  Model Assisted Evolution Strategies , 2005 .

[36]  Jürgen Branke,et al.  Faster convergence by means of fitness estimation , 2005, Soft Comput..

[37]  Kenneth A. De Jong,et al.  A Cooperative Coevolutionary Approach to Function Optimization , 1994, PPSN.

[38]  Kalyanmoy Deb,et al.  Dynamic multiobjective optimization problems: test cases, approximations, and applications , 2004, IEEE Transactions on Evolutionary Computation.

[39]  Jim Smith,et al.  Replacement Strategies in Steady State Genetic Algorithms: Static Environments , 1998, FOGA.

[40]  Robert E. Smith,et al.  Fitness inheritance in genetic algorithms , 1995, SAC '95.

[41]  Thomas M A Fink,et al.  Stochastic annealing. , 2003, Physical review letters.

[42]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[43]  Juan J. Alonso,et al.  Mutiobjective Optimization Using Approximation Model-Based Genetic Algorithms , 2004 .

[44]  Andy J. Keane,et al.  Optimisation for Multilevel Problems: A Comparison of Various Algorithms , 1998 .

[45]  Paul J. Darwen,et al.  Co-evolutionary learning on noisy tasks , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[46]  Sung-Bae Cho,et al.  Emotional image and musical information retrieval with interactive genetic algorithm , 2004, Proc. IEEE.

[47]  Brad Johanson,et al.  GP-Music: An Interactive Genetic Programming System for Music Generation with Automated Fitness Raters , 2007 .

[48]  Kalyanmoy Deb,et al.  Introducing Robustness in Multi-Objective Optimization , 2006, Evolutionary Computation.

[49]  Xin Yao,et al.  On Evolving Robust Strategies for Iterated Prisoner's Dilemma , 1993, Evo Workshops.

[50]  Peter J. Bentley,et al.  Dynamic Search With Charged Swarms , 2002, GECCO.

[51]  Shigeyoshi Tsutsui,et al.  Genetic algorithms with a robust solution searching scheme , 1997, IEEE Trans. Evol. Comput..

[52]  Manolis Papadrakakis,et al.  Optimization of Large-Scale 3-D Trusses Using Evolution Strategies and Neural Networks , 1999 .

[53]  Jürgen Branke,et al.  Multi-swarm Optimization in Dynamic Environments , 2004, EvoWorkshops.

[54]  H. Greiner Robust optical coating design with evolutionary strategies. , 1996, Applied optics.

[55]  T. Back,et al.  Thresholding-a selection operator for noisy ES , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[56]  Hans-Georg Beyer,et al.  Efficiency and mutation strength adaptation of the (μ/μI, λ)-ES in a noisy environment , 2000 .

[57]  K. Weicker,et al.  On evolution strategy optimization in dynamic environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[58]  Hans-Georg Beyer,et al.  Efficiency and Mutation Strength Adaptation of the (mu, muI, lambda)-ES in a Noisy Environment , 2000, PPSN.

[59]  Hartmut Schmeck,et al.  An Ant Colony Optimization approach to dynamic TSP , 2001 .

[60]  Wei Wang,et al.  Theoretical Analysis of Simple Evolution Strategies in Quickly Changing Environments , 2003, GECCO.

[61]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[62]  Stefan Droste,et al.  Design and Management of Complex Technical Processes and Systems by Means of Computational Intelligence Methods Analysis of the (1+1) Ea for a Dynamically Bitwise Changing Onemax Analysis of the (1+1) Ea for a Dynamically Bitwise Changing Onemax , 2003 .

[63]  Benjamin W. Wah,et al.  Dynamic Control of Genetic Algorithms in a Noisy Environment , 1993, ICGA.

[64]  K. Rasheed,et al.  An incremental-approximate-clustering approach for developing dynamic reduced models for design optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[65]  Yaochu Jin,et al.  Quality Measures for Approximate Models in Evolutionary Computation , 2003 .

[66]  Stuart Kauffman,et al.  Adaptive walks with noisy fitness measurements , 1995, Molecular Diversity.

[67]  Yaochu Jin,et al.  A comprehensive survey of fitness approximation in evolutionary computation , 2005, Soft Comput..

[68]  Bernhard Sendhoff,et al.  Neural Networks for Fitness Approximation in Evolutionary Optimization , 2005 .

[69]  Hans-Georg Beyer,et al.  Local performance of the (1 + 1)-ES in a noisy environment , 2002, IEEE Trans. Evol. Comput..

[70]  Jongsoo Lee,et al.  Parallel Genetic Algorithm Implementation in Multidisciplinary Rotor Blade Design , 1996 .

[71]  Hans-Georg Beyer,et al.  Actuator Noise in Recombinant Evolution Strategies on General Quadratic Fitness Models , 2004, GECCO.

[72]  Hans-Georg Beyer,et al.  On the Effects of Outliers on Evolutionary Optimization , 2003, IDEAL.

[73]  Erick Cantú-Paz,et al.  Adaptive Sampling for Noisy Problems , 2004, GECCO.

[74]  J. Branke Reducing the sampling variance when searching for robust solutions , 2001 .

[75]  Shengxiang Yang,et al.  Constructing dynamic test environments for genetic algorithms based on problem difficulty , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[76]  Jürgen Branke,et al.  Efficient fitness estimation in noisy environments , 2001 .

[77]  Sandor Markon,et al.  Threshold selection, hypothesis tests, and DOE methods , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[78]  Khaled Rasheed,et al.  Comparison of methods for developing dynamic reduced models for design optimization , 2002, Soft Comput..

[79]  X. Yao Evolving Artificial Neural Networks , 1999 .

[80]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[81]  Adrian Thompson,et al.  On the Automatic Design of Robust Electronics Through Artificial Evolution , 1998, ICES.

[82]  Karsten Weicker,et al.  Evolutionary algorithms and dynamic optimization problems , 2003 .

[83]  J. Redmond,et al.  Actuator placement based on reachable set optimization for expected disturbance , 1996 .

[84]  A. Ratle Optimal sampling strategies for learning a fitness model , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[85]  M. J. D. Powell,et al.  Radial basis functions for multivariable interpolation: a review , 1987 .

[86]  P. Koumoutsakos,et al.  Multiobjective evolutionary algorithm for the optimization of noisy combustion processes , 2002 .

[87]  Thomas Bäck,et al.  Metamodel-Assisted Evolution Strategies , 2002, PPSN.

[88]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[89]  Dirk V. Arnold,et al.  Noisy Optimization With Evolution Strategies , 2002, Genetic Algorithms and Evolutionary Computation.

[90]  Ronald W. Morrison,et al.  Designing Evolutionary Algorithms for Dynamic Environments , 2004, Natural Computing Series.

[91]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[92]  Hong Xie,et al.  Process optimization using a fuzzy logic response surface method , 1994 .

[93]  Mehrdad Salami,et al.  A fast evaluation strategy for evolutionary algorithms , 2003, Appl. Soft Comput..

[94]  Yaochu Jin,et al.  Advanced fuzzy systems design and applications , 2003, Studies in Fuzziness and Soft Computing.

[95]  L. Darrell Whitley,et al.  Searching in the Presence of Noise , 1996, PPSN.

[96]  Timothy M. Mauery,et al.  COMPARISON OF RESPONSE SURFACE AND KRIGING MODELS FOR MULTIDISCIPLINARY DESIGN OPTIMIZATION , 1998 .

[97]  P. Koumoutsakos,et al.  Accelerating Evolutionary Algorithms Using Fitness Function Models , 2003 .

[98]  T. Ray,et al.  A framework for optimization using approximate functions , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[99]  Christoph F. Eick,et al.  Supporting Polyploidy in Genetic Algorithms Using Dominance Vectors , 1997, Evolutionary Programming.

[100]  Mourad Sefrioui,et al.  A Hierarchical Genetic Algorithm Using Multiple Models for Optimization , 2000, PPSN.

[101]  David E. Goldberg,et al.  Genetic Algorithms, Efficiency Enhancement, And Deciding Well With Differing Fitness Variances , 2002, GECCO.

[102]  Rolf Dornberger,et al.  ulti-objective evolutionary algorithm for the optimization of noisy combustion problems , 2002 .

[103]  Andy J. Keane,et al.  Evolutionary optimization for computationally expensive problems using Gaussian processes , 2001 .

[104]  Wei Shyy,et al.  Response surface and neural network techniques for rocket engine injector optimization , 1999 .

[105]  Christine A. Shoemaker,et al.  Local function approximation in evolutionary algorithms for the optimization of costly functions , 2004, IEEE Transactions on Evolutionary Computation.

[106]  Liang Shi,et al.  Multiobjective GA optimization using reduced models , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[107]  Andy J. Keane,et al.  Combining approximation concepts with genetic algorithm-based structural optimization procedures , 1998 .

[108]  Stephane Pierret,et al.  Turbomachinery Blade Design Using a Navier–Stokes Solver and Artificial Neural Network , 1998 .

[109]  Craig W. Reynolds Evolution of corridor following behavior in a noisy world , 1994 .

[110]  David E. Goldberg,et al.  Efficient Discretization Scheduling In Multiple Dimensions , 2002, GECCO.

[111]  Günter Rudolph,et al.  Evolutionary Search for Minimal Elements in Partially Ordered Finite Sets , 1998, Evolutionary Programming.

[112]  S. Ranji Ranjithan,et al.  Chance-Constrained Optimization Using Genetic Algorithms: An Application in Air Quality Management , 2001 .

[113]  John J. Grefenstette,et al.  Case-Based Initialization of Genetic Algorithms , 1993, ICGA.

[114]  Günter Rudolph,et al.  A partial order approach to noisy fitness functions , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[115]  Helen G. Cobb,et al.  An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments , 1990 .

[116]  Jürgen Branke,et al.  Selection in the Presence of Noise , 2003, GECCO.

[117]  Dirk V. Arnold,et al.  Evolution strategies in noisy environments- a survey of existing work , 2001 .

[118]  A. Keane,et al.  Evolutionary Optimization of Computationally Expensive Problems via Surrogate Modeling , 2003 .

[119]  Khaled Rasheed,et al.  Comparison Of Methods For Using Reduced Models To Speed Up Design Optimization , 2002, GECCO.

[120]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[121]  Natalia Alexandrov,et al.  Multidisciplinary design optimization : state of the art , 1997 .

[122]  Russell C. Eberhart,et al.  Adaptive particle swarm optimization: detection and response to dynamic systems , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[123]  Hajime Kita,et al.  Adaptation to a Changing Environment by Means of the Feedback Thermodynamical Genetic Algorithm , 1996, PPSN.

[124]  Robert H. Storer,et al.  Robustness Measures and Robust Scheduling for Job Shops , 1994 .

[125]  X. Yao,et al.  Combining landscape approximation and local search in global optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[126]  Shengxiang Yang,et al.  Non-stationary problem optimization using the primal-dual genetic algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[127]  Georg Ch. Pflug,et al.  Simulated Annealing for noisy cost functions , 1996, J. Glob. Optim..

[128]  John A. Biles,et al.  GenJam: A Genetic Algorithm for Generating Jazz Solos , 1994, ICMC.

[129]  Xiaodong Li,et al.  Comparing particle swarms for tracking extrema in dynamic environments , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[130]  Pratyush Sen,et al.  Directed Multiple Objective search of design spaces using Genetic Algorithms and neural networks , 1999 .

[131]  Jürgen Branke,et al.  Sequential Sampling in Noisy Environments , 2004, PPSN.

[132]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[133]  Bernhard Sendhoff,et al.  Constructing Dynamic Optimization Test Problems Using the Multi-objective Optimization Concept , 2004, EvoWorkshops.

[134]  Bruce A. Whitehead,et al.  Genetic evolution of radial basis function coverage using orthogonal niches , 1996, IEEE Trans. Neural Networks.

[135]  A. Giotis,et al.  LOW-COST STOCHASTIC OPTIMIZATION FOR ENGINEERING APPLICATIONS , 2002 .

[136]  Bernhard Sendhoff,et al.  On Evolutionary Optimization with Approximate Fitness Functions , 2000, GECCO.

[137]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[138]  Dekun Yang,et al.  Evolutionary algorithms with a coarse-to-fine function smoothing , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[139]  Jürgen Branke,et al.  Anticipation in Dynamic Optimization: The Scheduling Case , 2000, PPSN.

[140]  Andreas Zell,et al.  Evolution strategies assisted by Gaussian processes with improved preselection criterion , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[141]  J. Fitzpatrick,et al.  Genetic Algorithms in Noisy Environments , 2005, Machine Learning.

[142]  M. Gibbs,et al.  Efficient implementation of gaussian processes , 1997 .

[143]  Terence C. Fogarty,et al.  Adaptive Combustion Balancing in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of Local Search , 1997, ICGA.

[144]  Alain Ratle,et al.  Accelerating the Convergence of Evolutionary Algorithms by Fitness Landscape Approximation , 1998, PPSN.

[145]  Erik D. Goodman,et al.  A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problem , 1997, ICGA.

[146]  M. Farina A Minimal Cost Hybrid Strategy for Pareto Optimal Front Approximation , 2002 .

[147]  Thomas Bäck,et al.  Evolution strategies applied to perturbed objective functions , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[148]  Kalyanmoy Deb,et al.  Dynamic Multiobjective Optimization Problems: Test Cases, Approximation, and Applications , 2003, EMO.

[149]  Hajime Kita,et al.  Optimization of noisy fitness functions by means of genetic algorithms using history of search with test of estimation , 2000, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[150]  Hans-Georg Beyer,et al.  Random Dynamics Optimum Tracking with Evolution Strategies , 2002, PPSN.

[151]  Heiko Wersing,et al.  A decision making framework for game playing using evolutionary optimization and learning , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[152]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[153]  W. Cedeno,et al.  On the use of niching for dynamic landscapes , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[154]  M. Farina A neural network based generalized response surface multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[155]  Bernhard Sendhoff,et al.  Comparing neural networks and Kriging for fitness approximation in evolutionary optimization , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[156]  D. Goldberg,et al.  Don't evaluate, inherit , 2001 .

[157]  Magnus Rattray,et al.  Noisy Fitness Evaluation in Genetic Algorithms and the Dynamics of Learning , 1996, FOGA.

[158]  Stefan Droste,et al.  Analysis of the (1+1) EA for a dynamically changing ONEMAX-variant , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[159]  Andy J. Keane,et al.  Surrogate-assisted coevolutionary search , 2002, Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02..

[160]  Jason M. Daida,et al.  (1+1) genetic algorithm fitness dynamics in a changing environment , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[161]  William C. Carpenter,et al.  Common Misconceptions about Neural Networks as Approximators , 1994 .

[162]  Jürgen Branke,et al.  Evolving En-Route Caching Strategies for the Internet , 2004, GECCO.

[163]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[164]  Martin Middendorf,et al.  A Hierarchical Particle Swarm Optimizer for Dynamic Optimization Problems , 2004, EvoWorkshops.

[165]  Hajime Kita,et al.  Adaptation to a Changing Environment by Means of the Thermodynamical Genetic Algorithm , 1999 .

[166]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[167]  T. Ray Constrained robust optimal design using a multiobjective evolutionary algorithm , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[168]  David E. Goldberg,et al.  A Critical Review of Classifier Systems , 1989, ICGA.

[169]  Peter Stagge,et al.  Averaging Efficiently in the Presence of Noise , 1998, PPSN.

[170]  Risto Miikkulainen,et al.  Forming Neural Networks Through Efficient and Adaptive Coevolution , 1997, Evolutionary Computation.

[171]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[172]  Brad L. Miller,et al.  Noise, sampling, and efficient genetic algorthms , 1997 .

[173]  Giancarlo Mauri,et al.  Application of Evolutionary Algorithms to Protein Folding Prediction , 1997, Artificial Evolution.

[174]  Dipankar Dasgupta,et al.  Nonstationary Function Optimization using the Structured Genetic Algorithm , 1992, PPSN.

[175]  Jürgen Branke,et al.  Optimization in Dynamic Environments , 2002 .

[176]  David B. Fogel,et al.  A Comparison of Self-Adaptation Methods for Finite State Machines in Dynamic Environments , 1996, Evolutionary Programming.

[177]  Guojun Lu,et al.  DAFHEA: a dynamic approximate fitness-based hybrid EA for optimisation problems , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[178]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[179]  A.P. Engelbrecht,et al.  Learning to play games using a PSO-based competitive learning approach , 2004, IEEE Transactions on Evolutionary Computation.

[180]  Thomas J. Santner,et al.  Design and analysis of computer experiments , 1998 .

[181]  Thomas Bäck,et al.  Evolution Strategies on Noisy Functions: How to Improve Convergence Properties , 1994, PPSN.

[182]  Karsten Weicker,et al.  Dynamic rotation and partial visibility , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[183]  H. Beyer Evolutionary algorithms in noisy environments : theoretical issues and guidelines for practice , 2000 .

[184]  Christian Bierwirth,et al.  Production Scheduling and Rescheduling with Genetic Algorithms , 1999, Evolutionary Computation.

[185]  Hans-Georg Beyer,et al.  Local Performance of the (μ/μ, μ)-ES in a Noisy Environment , 2000, FOGA.

[186]  R. Lyndon While,et al.  Applying evolutionary algorithms to problems with noisy, time-consuming fitness functions , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[187]  Hartmut Schmeck,et al.  Designing evolutionary algorithms for dynamic optimization problems , 2003 .

[188]  Bernhard Sendhoff,et al.  Fitness Approximation In Evolutionary Computation - a Survey , 2002, GECCO.

[189]  Haym Hirsh,et al.  Informed operators: Speeding up genetic-algorithm-based design optimization using reduced models , 2000, GECCO.

[190]  Emma Hart,et al.  A Comparison of Dominance Mechanisms and Simple Mutation on Non-stationary Problems , 1998, PPSN.

[191]  W. Punch,et al.  A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problems , 1997 .

[192]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[193]  K. S. Anderson,et al.  Genetic crossover strategy using an approximation concept , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[194]  Xiaodong Li,et al.  A particle swarm model for tracking multiple peaks in a dynamic environment using speciation , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[195]  Shigeyoshi Tsutsui,et al.  A Robust Solution Searching Scheme in Genetic Search , 1996, PPSN.

[196]  Kemper Lewis,et al.  Comparison of Design Methodologies in the Preliminary Design of a Passenger Aircraft , 1999 .

[197]  Yaochu Jin,et al.  Managing approximate models in evolutionary aerodynamic design optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[198]  Atsuko Mutoh,et al.  Reducing execution time on genetic algorithm in real-world applications using fitness prediction: parameter optimization of SRM control , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[199]  Hans-Georg Beyer,et al.  A Comparison of Evolution Strategies with Other Direct Search Methods in the Presence of Noise , 2003, Comput. Optim. Appl..

[200]  X. Yao Evolutionary Search of Approximated N-dimensional Landscapes , 2000 .

[201]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[202]  Larry Bull,et al.  On Model-Based Evolutionary Computation , 1999, Soft Comput..

[203]  Peter Ross,et al.  An Immune System Approach to Scheduling in Changing Environments , 1999, GECCO.

[204]  D. Grierson,et al.  Optimal sizing, geometrical and topological design using a genetic algorithm , 1993 .

[205]  Erik D. Goodman,et al.  Evaluation of Injection Island GA Performance on Flywheel Design Optimisation , 1998 .

[206]  A. Carlisle,et al.  Tracking changing extrema with adaptive particle swarm optimizer , 2002, Proceedings of the 5th Biannual World Automation Congress.

[207]  Andy J. Keane,et al.  Metamodeling Techniques For Evolutionary Optimization of Computationally Expensive Problems: Promises and Limitations , 1999, GECCO.

[208]  Manolis Papadrakakis,et al.  Structural optimization using evolution strategies and neural networks , 1998 .

[209]  Andreas Zell,et al.  Evolution strategies with controlled model assistance , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).