Multiparty quantum protocols for assisted entanglement distillation

Quantum information theory is a multidisciplinary field whose objective is to understand what happens when information is stored in the state of a quantum system. Quantum mechanics provides us with a new resource, called quantum entanglement, which can be exploited to achieve novel tasks such as teleportation and superdense coding. Current technologies allow the transmission of entangled photon pairs across distances up to roughly 100 kilometers. For longer distances, noise arising from various sources degrade the transmission of entanglement to the point that it becomes impossible to use the entanglement as a resource for future tasks. A strategy for dealing with this difficulty is to employ quantum repeaters, stations intermediate between the sender and receiver which participate in the process of entanglement distillation, thereby improving on what the sender and receiver could do on their own. In this work, we study entanglement distillation between two recipients sharing a mixed state and with the help of repeater stations. We extend the notion of entanglement of assistance to arbitrary states and give a protocol for extracting pure entanglement. We also study quantum communication protocols in a more general context. We give a new protocol for the task of multiparty state merging. The previous multiparty state merging protocol required the use of time-sharing. Our protocol does not require time-sharing for distributed compression of two senders. In the one-shot regime, we achieve multiparty state merging with entanglement costs not restricted to corner points of the entanglement cost region. Our analysis of the entanglement cost is performed using (smooth) min- and max-entropies. We illustrate the benefits of our approach by looking at different examples.

[1]  Nilanjana Datta,et al.  General Theory of Environment-Assisted Entanglement Distillation , 2010, IEEE Transactions on Information Theory.

[2]  Jeroen van de Graaf,et al.  Cryptographic Distinguishability Measures for Quantum-Mechanical States , 1997, IEEE Trans. Inf. Theory.

[3]  Andreas J. Winter,et al.  Coding theorem and strong converse for quantum channels , 1999, IEEE Trans. Inf. Theory.

[4]  Marco Tomamichel,et al.  Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.

[5]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[6]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[7]  Charles H. Bennett,et al.  Concentrating partial entanglement by local operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[8]  Schumacher,et al.  Quantum coding. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[10]  Thomas Lorünser,et al.  High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber. , 2007, Optics express.

[11]  M. Berta Single-shot Quantum State Merging , 2009, 0912.4495.

[12]  M. Nielsen,et al.  Information transmission through a noisy quantum channel , 1997, quant-ph/9702049.

[13]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[14]  A. Winter,et al.  Distillation of secret key and entanglement from quantum states , 2003, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  D. Whiffen Thermodynamics , 1973, Nature.

[16]  M. Fannes A continuity property of the entropy density for spin lattice systems , 1973 .

[17]  E. Schrödinger Discussion of Probability Relations between Separated Systems , 1935, Mathematical Proceedings of the Cambridge Philosophical Society.

[18]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[19]  Christian Cachin,et al.  Smooth Entropy and Rényi Entropy , 1997, EUROCRYPT.

[20]  N. Bohr II - Can Quantum-Mechanical Description of Physical Reality be Considered Complete? , 1935 .

[21]  Derek W. Robinson,et al.  Mean Entropy of States in Quantum‐Statistical Mechanics , 1968 .

[22]  Andreas J. Winter,et al.  Quantum Reverse Shannon Theorem , 2009, ArXiv.

[23]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[24]  Wu-Ki Tung,et al.  Group Theory in Physics , 1985 .

[25]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[26]  Joseph M. Renes,et al.  Noisy Channel Coding via Privacy Amplification and Information Reconciliation , 2010, IEEE Transactions on Information Theory.

[27]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[28]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[29]  W. Marsden I and J , 2012 .

[30]  T. Ralph,et al.  Demonstration of an all-optical quantum controlled-NOT gate , 2003, Nature.

[31]  Wolfgang Dür,et al.  Quantum Repeaters: The Role of Imperfect Local Operations in Quantum Communication , 1998 .

[32]  John A. Smolin,et al.  Entanglement of assistance and multipartite state distillation , 2005 .

[33]  B. Moor,et al.  Asymptotic adaptive bipartite entanglement-distillation protocol , 2006, quant-ph/0602205.

[34]  Rupert Ursin,et al.  High-fidelity transmission of entanglement over a high-loss free-space channel , 2009, 0902.2015.

[35]  R. Jozsa Fidelity for Mixed Quantum States , 1994 .

[36]  E. Villaseñor Introduction to Quantum Mechanics , 2008, Nature.

[37]  A. Uhlmann The "transition probability" in the state space of a ∗-algebra , 1976 .

[38]  Debbie W. Leung,et al.  Remote preparation of quantum states , 2005, IEEE Transactions on Information Theory.

[39]  Shahram Mohammadnejad,et al.  Quantum Hadamard Gate Implementation Using Planar Lightwave Circuit and Photonic Crystal Structures , 2008 .

[40]  Saikat Guha,et al.  The free space optical interference channel , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[41]  Renato Renner,et al.  Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.

[42]  A. Harrow Entanglement spread and clean resource inequalities , 2009, 0909.1557.

[43]  E. Lieb,et al.  Proof of the strong subadditivity of quantum‐mechanical entropy , 1973 .

[44]  Mario Berta,et al.  A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem , 2009, TQC.

[45]  Alexander S. Holevo,et al.  The Capacity of the Quantum Channel with General Signal States , 1996, IEEE Trans. Inf. Theory.

[46]  Patrick M. Hayden,et al.  Assisted entanglement distillation , 2010, Quantum Inf. Comput..

[47]  Igor Devetak The private classical capacity and quantum capacity of a quantum channel , 2005, IEEE Transactions on Information Theory.

[48]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[49]  Pranab Sen,et al.  Classical Communication Over a Quantum Interference Channel , 2011, IEEE Transactions on Information Theory.

[50]  A. Rényi On Measures of Entropy and Information , 1961 .

[51]  P. Hayden,et al.  Universal entanglement transformations without communication , 2003 .

[52]  E. Stachow An Operational Approach to Quantum Probability , 1978 .

[53]  M. Horodecki,et al.  Quantum information can be negative , 2005, quant-ph/0505062.

[54]  F. Verstraete,et al.  Interpolation of recurrence and hashing entanglement distillation protocols , 2004, quant-ph/0404111.

[55]  J. Cirac,et al.  Quantum repeaters based on entanglement purification , 1998, quant-ph/9808065.

[56]  Patrick M. Hayden,et al.  One-shot Multiparty State Merging , 2010, ArXiv.

[57]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[58]  A. Winter,et al.  Communication cost of entanglement transformations , 2002, quant-ph/0204092.

[59]  Nilanjana Datta,et al.  Distilling entanglement from arbitrary resources , 2010, 1006.1896.

[60]  S. Albeverio,et al.  Quantum Teleportation: from Pure to Mixed States and Standard to Optimal , 2003 .

[61]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[62]  A. Einstein Relativity: The Special and the General Theory , 2015 .

[63]  Renato Renner,et al.  Simple and Tight Bounds for Information Reconciliation and Privacy Amplification , 2005, ASIACRYPT.

[64]  P. Halmos Finite-Dimensional Vector Spaces , 1960 .

[65]  Frank Verstraete,et al.  Local vs. joint measurements for the entanglement of assistance , 2003, Quantum Inf. Comput..

[66]  Michael D. Westmoreland,et al.  Sending classical information via noisy quantum channels , 1997 .

[67]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[68]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[69]  R. Jozsa,et al.  A Complete Classification of Quantum Ensembles Having a Given Density Matrix , 1993 .

[70]  G. Brassard,et al.  Quantum Pseudo-Telepathy , 2004, quant-ph/0407221.

[71]  A. Winter,et al.  The mother of all protocols: restructuring quantum information’s family tree , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[72]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[73]  Raymond W. Yeung,et al.  Information Theory and Network Coding , 2008 .

[74]  Pranab Sen,et al.  Quantum interference channels , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[75]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[76]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[77]  M. Horodecki,et al.  Quantum State Merging and Negative Information , 2005, quant-ph/0512247.

[78]  Jafar Ahmadi,et al.  Characterizations based on Rényi entropy of order statistics and record values , 2008 .

[79]  M. M. Mayoral,et al.  Renyi's Entropy as an Index of Diversity in Simple-Stage Cluster Sampling , 1998, Inf. Sci..

[80]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.