Variational theory for one-dimensional longitudinal beam dynamics

Using the semi-inverse method [J.H. He, Chaos Solitons Fractals 19 (2004) 847], a variational principle for a one-dimensional warm-fluid model describing the longitudinal beam dynamics is established.

[1]  Tian-Hu Hao,et al.  Search for Variational Principles in Electrodynamics by Lagrange Method , 2005 .

[2]  Tian-Hu Hao Application of the Lagrange Multiplier Method the Semi-Inverse Method to the Search for Generalized Variational Principle in Quantum Mechanics , 2003 .

[3]  Hong-Mei Liu,et al.  Variational Approach to Nonlinear Electrochemical System , 2004 .

[4]  T. Hao Application of Lagrange Multiplier Method to the Search for Variational Principles of Nonlinear Electrostrictive Materials , 2003 .

[5]  Ji-Huan He,et al.  Variational principles for some nonlinear partial differential equations with variable coefficients , 2004 .

[6]  M. Mosconi Mixed variational formulations for continua with microstructure , 2002 .

[7]  Ning Pan,et al.  Variational principles for nonlinear fiber optics , 2005 .

[8]  Hong-Mei Liu,et al.  Generalized variational principles for ion acoustic plasma waves by He's semi-inverse method , 2005 .

[9]  R. Davidson,et al.  Analytical solutions for the nonlinear longitudinal drift compression (expansion) of intense charged particle beams , 2004, physics/0406146.

[10]  Ji-Huan He,et al.  Variational approach to (2+1)-dimensional dispersive long water equations , 2005 .

[11]  Ji-Huan He,et al.  Variational Theory for Linear Magneto-Electro-Elasticity , 2001 .

[12]  Ji-Huan He,et al.  Semi-Inverse Method of Establishing Generalized Variational Principles for Fluid Mechanics With Emphasis on Turbomachinery Aerodynamics , 1997 .

[13]  Ji-Huan He,et al.  Variational Principle for Nano Thin Film Lubrication , 2003 .