Reappraising Medfly Longevity

In this article we explore the usefulness of a quantile regression formulation of reanalyzing a large experimental study that monitored age-specific mortality in a sample of roughly 1.2 million Mediterranean fruit flies. The quantile regression approach appears useful in refining several of the conclusions drawn from the original study including the apparent decline in mortality rates at advanced ages, and the gender crossover effect in survival functions for medflies.

[1]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[2]  D. Cox Regression Models and Life-Tables , 1972 .

[3]  Kjell A. Doksum,et al.  Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .

[4]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[5]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[6]  S. Bennett,et al.  Analysis of survival data by the proportional odds model. , 1983, Statistics in medicine.

[7]  J. Powell,et al.  Censored regression quantiles , 1986 .

[8]  R. Koenker,et al.  Computing regression quantiles , 1987 .

[9]  P. Hall,et al.  On the Distribution of a Studentized Quantile , 1988 .

[10]  Kjell A. Doksum,et al.  On a Correspondence between Models in Binary Regression Analysis and in Survival Analysis , 1990 .

[11]  J. Vaupel,et al.  Slowing of mortality rates at older ages in large medfly cohorts. , 1992, Science.

[12]  Fruit fly aging and mortality. , 1993, Science.

[13]  Roger Koenker,et al.  Tests of linear hypotheses based on regression rank scores , 1993 .

[14]  Explaining fruit fly longevity. , 1993, Science.

[15]  Z. Ying,et al.  A resampling method based on pivotal estimating functions , 1994 .

[16]  R. Koenker,et al.  A Remark on Algorithm as 229: Computing Dual Regression Quantiles and Regression Rank Scores , 1994 .

[17]  James R. Carey,et al.  Sex-specific life table aging rates in large medfly cohorts , 1995, Experimental Gerontology.

[18]  J. Vaupel,et al.  A male-female longevity paradox in medfly cohorts , 1995 .

[19]  James R. Carey,et al.  Mortality dynamics of density in the mediterranean fruit fly , 1995, Experimental Gerontology.

[20]  J. Hahn Bootstrapping Quantile Regression Estimators , 1995, Econometric Theory.

[21]  J. Carey,et al.  Sex mortality differentials and selective survival in large medfly cohorts: implications for human sex mortality differentials. , 1995, The Gerontologist.

[22]  J. Horowitz Bootstrap Methods for Median Regression Models , 1996 .

[23]  R. Koenker,et al.  The Gaussian hare and the Laplacian tortoise: computability of squared-error versus absolute-error estimators , 1997 .

[24]  S. Lipsitz,et al.  Quantile Regression Methods for Longitudinal Data with Drop‐outs: Application to CD4 Cell Counts of Patients Infected with the Human Immunodeficiency Virus , 1997 .

[25]  Kjell A. Doksum,et al.  On average derivative quantile regression , 1997 .

[26]  Moshe Buchinsky Recent Advances in Quantile Regression Models: A Practical Guideline for Empirical Research , 1998 .

[27]  Bernd Fitzenberger,et al.  The moving blocks bootstrap and robust inference for linear least squares and quantile regressions , 1998 .

[28]  A. Yashin,et al.  Biodemographic trajectories of longevity. , 1998, Science.

[29]  Jinyong Hahn,et al.  An Alternative Estimator for the Censored Quantile Regression Model , 1998 .

[30]  R. Koenker,et al.  Goodness of Fit and Related Inference Processes for Quantile Regression , 1999 .

[31]  A. Thatcher The long‐term pattern of adult mortality and the highest attained age , 1999, Journal of the Royal Statistical Society. Series A,.

[32]  Joel L Horowitz,et al.  An Adaptive, Rate-Optimal Test of Linearity for Median Regression Models , 2002 .