Fabrication of Axial and Radial Heterostructures for Semiconductor Nanowires by Using Selective-Area Metal-Organic Vapor-Phase Epitaxy

The fabrication of GaAs- and InP-based III-V semiconductor nanowires with axial/radial heterostructures by using selective-area metal-organic vapor-phase epitaxy is reviewed. Nanowires, with a diameter of 50–300 nm and with a length of up to 10 μm, have been grown along the 〈111〉B or 〈111〉A crystallographic orientation from lithography-defined SiO2 mask openings on a group III-V semiconductor substrate surface. An InGaAs quantum well (QW) in GaAs/InGaAs nanowires and a GaAs QW in GaAs/AlGaAs or GaAs/GaAsP nanowires have been fabricated for the axial heterostructures to investigate photoluminescence spectra from QWs with various thicknesses. Transmission electron microscopy combined with energy dispersive X-ray spectroscopy measurements have been used to analyze the crystal structure and the atomic composition profile for the nanowires. GaAs/AlGaAs, InP/InAs/InP, and GaAs/GaAsP core-shell structures have been found to be effective for the radial heterostructures to increase photoluminescence intensity and have enabled laser emissions from a single GaAs/GaAsP nanowire waveguide. The results have indicated that the core-shell structure is indispensable for surface passivation and practical use of nanowire optoelectronics devices.

[1]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[2]  Daihua Zhang,et al.  In2O3 nanowires as chemical sensors , 2003 .

[3]  H. Gassen,et al.  A quantitative study on the growth of silicon whiskers from silane and germanium whiskers from germane , 1971 .

[4]  Peidong Yang,et al.  Optical Cavity Effects in ZnO Nanowire Lasers and Waveguides , 2003 .

[5]  Eun Kyung Lee,et al.  Catalyst-free growth of single-crystal silicon and germanium nanowires. , 2009, Nano letters.

[6]  T. Fukui,et al.  Growth of GaAs/AlGaAs hexagonal pillars on GaAs (1 1 1)B surfaces by selective-area MOVPE , 2004 .

[7]  D. Vanmaekelbergh,et al.  Phase-correlated nondirectional laser emission from the end facets of a ZnO nanowire. , 2006, Nano letters.

[8]  M. Nakayama,et al.  Characteristics of photoluminescence due to exciton-exciton scattering in GaAs/AlAs multiple quantum wells , 2009 .

[9]  Lars Samuelson,et al.  Nanowire resonant tunneling diodes , 2002 .

[10]  Marzin,et al.  Near-surface GaAs/Ga0.7Al0.3As quantum wells: Interaction with the surface states. , 1990, Physical review. B, Condensed matter.

[11]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[12]  Daihua Zhang,et al.  In 2 O 3 nanowires as chemical sensors , 2003 .

[13]  T. Fukui,et al.  Realization of conductive InAs nanotubes based on lattice-mismatched InP∕InAs core-shell nanowires , 2006 .

[14]  Takashi Fukui,et al.  Catalyst-free growth of GaAs nanowires by selective-area metalorganic vapor-phase epitaxy , 2005 .

[15]  J. Mansot,et al.  Phase diagram of GaAs , 1990 .

[16]  C. Fradin,et al.  Layer-by-layer and step-flow growth mechanisms in GaAsP/GaP nanowire heterostructures , 2006 .

[17]  S. Ando,et al.  Selective epitaxy of GaAs/AlGaAs on (111) B substrates by MOCVD and applications to nanometer structures , 1991 .

[18]  Inspec,et al.  Properties of lattice-matched and strained indium gallium arsenide , 1993 .

[19]  Chao Li,et al.  Diameter‐Controlled Growth of Single‐Crystalline In2O3 Nanowires and Their Electronic Properties , 2003 .

[20]  Selective-area growth of hexagonal nanopillars with single InGaAs/GaAs quantum wells on GaAs(111)B substrate and their temperature-dependent photoluminescence , 2007 .

[21]  A. P. Roth,et al.  Residual shallow acceptors in GaAs layers grown by metal‐organic vapor phase epitaxy , 1983 .

[22]  C. Chang-Hasnain,et al.  Atomically sharp catalyst-free wurtzite GaAs /AlGaAs nanoneedles grown on silicon , 2008 .

[23]  Van de Walle Cg Band lineups and deformation potentials in the model-solid theory. , 1989 .

[24]  Yamazaki,et al.  Conduction-band and valence-band structures in strained In1-xGaxAs/InP quantum wells on (001) InP substrates. , 1993, Physical review. B, Condensed matter.

[25]  Charles M. Lieber,et al.  Coaxial silicon nanowires as solar cells and nanoelectronic power sources , 2007, Nature.

[26]  Tobias Heindel,et al.  Single photon emission from positioned GaAs/AlGaAs photonic nanowires , 2010 .

[27]  Van de Walle CG Band lineups and deformation potentials in the model-solid theory. , 1989, Physical review. B, Condensed matter.

[28]  Kenji Hiruma,et al.  GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. , 2010, Nano letters.

[29]  T. Fukui,et al.  Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy , 2007 .

[30]  Lars Samuelson,et al.  Growth of one-dimensional nanostructures in MOVPE , 2004 .

[31]  Chuang,et al.  Efficient band-structure calculations of strained quantum wells. , 1991, Physical review. B, Condensed matter.

[32]  A. Quivy,et al.  Influence of the temperature and excitation power on the optical properties of InGaAs/GaAs quantum wells grown on vicinal GaAs(001) surfaces , 2001 .

[33]  Mahendra K. Sunkara,et al.  Near-infrared semiconductor subwavelength-wire lasers , 2006 .

[34]  Yoshinobu Aoyagi,et al.  New Technique for Fabrication of Two-Dimensional Photonic Bandgap Crystals by Selective Epitaxy , 1997 .

[35]  Kenji Hiruma,et al.  Photoluminescence Characteristics of GaAs Nanowhiskers: Effects of Depletion Potential (Special Issue on Quantum Effect Devices and Their Fabrication Technologies) , 1996 .

[36]  Gyu-Chul Yi,et al.  Enhanced light output of GaN-based light-emitting diodes with ZnO nanorod arrays , 2008 .

[37]  E. Bakkers,et al.  Large redshift in photoluminescence of p-doped InP nanowires induced by Fermi-level pinning , 2006 .

[38]  Takashi Fukui,et al.  Controlled growth of highly uniform, axial/radial direction-defined, individually addressable InP nanowire arrays , 2005 .

[39]  Kenji Hiruma,et al.  Growth characteristics of GaAs nanowires obtained by selective area metal–organic vapour-phase epitaxy , 2008, Nanotechnology.

[40]  Kenji Hiruma,et al.  Growth and Characterization of InGaAs Nanowires Formed on GaAs(111)B by Selective-Area Metal Organic Vapor Phase Epitaxy , 2010 .

[41]  Charles M. Lieber,et al.  Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics , 2004 .

[42]  Lars Samuelson,et al.  Epitaxial Growth of Indium Arsenide Nanowires on Silicon Using Nucleation Templates Formed by Self‐Assembled Organic Coatings , 2007 .

[43]  G. Wagner,et al.  Selective-area growth of GaAs and InAs nanowires—homo- and heteroepitaxy using SiNx templates , 2008 .

[44]  Hiroto Sekiguchi,et al.  Emission color control from blue to red with nanocolumn diameter of InGaN/GaN nanocolumn arrays grown on same substrate , 2010 .

[45]  T. Fukui,et al.  Photoluminescence from Single Hexagonal Nano-Wire Grown by Selective Area MOVPE , 2005 .

[46]  W. Wiegmann,et al.  Quantum States of Confined Carriers in Very Thin AlxGa1-x As-GaAs-AlxGa1-xAs Heterostructures , 1974 .

[47]  Charles M. Lieber,et al.  Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. , 2005, Nano letters.

[48]  Eiichi Sano,et al.  Vertical Surrounding Gate Transistors Using Single InAs Nanowires Grown on Si Substrates , 2010 .

[49]  Takashi Fukui,et al.  Single GaAs/GaAsP coaxial core-shell nanowire lasers. , 2009, Nano letters.

[50]  Heike Riel,et al.  Si-InAs heterojunction Esaki tunnel diodes with high current densities , 2010 .

[51]  Peidong Yang,et al.  Semiconductor nanowire ring resonator laser. , 2006, Physical review letters.

[52]  E. I. Givargizov Fundamental aspects of VLS growth , 1975 .

[53]  H. Hasegawa,et al.  Silicon interlayer based surface passivation of near‐surface quantum wells , 1995 .

[54]  Takashi Fukui,et al.  Control of InAs nanowire growth directions on Si. , 2008, Nano letters.

[55]  Ray R. LaPierre,et al.  GaP/GaAsP/GaP core–multishell nanowire heterostructures on (111) silicon , 2007 .

[56]  T. Fukui,et al.  Type-II behavior in wurtzite InP/InAs/InP core-multishell nanowires , 2008 .

[57]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[58]  D. Grützmacher,et al.  MOVPE of n-doped GaAs and modulation doped GaAs/AlGaAs nanowires , 2010 .

[59]  Florian Siegert,et al.  Epitaxial core – shell and core – multishell nanowire heterostructures , 2002 .

[60]  Northrup,et al.  Reconstructions of GaAs(1-bar 1-bar 1-bar) surfaces observed by scanning tunneling microscopy. , 1990, Physical review letters.

[61]  Ikuo Mito,et al.  Selective metalorganic vapor phase epitaxial growth of InGaAsP / InP layers with bandgap energy control in InGaAs / InGaAsP multiple-quantum well structures , 1993 .

[62]  T. Fukui,et al.  Fabrication and characterization of GaAs quantum well buried in AlGaAs/GaAs heterostructure nanowires , 2010 .

[63]  Multiple quantum well AlGaAs nanowires. , 2008, Nano letters.

[64]  J. Kasahara,et al.  GaAs whiskers grown by a thermal decomposition method , 1977 .

[65]  Kenji Hiruma,et al.  GaAs p‐n junction formed in quantum wire crystals , 1992 .

[66]  M. Yoshizawa,et al.  Self-organization of GaN/Al0.18Ga0.82N multi-layer nano-columns on (0 0 0 1) Al2O3 by RF molecular beam epitaxy for fabricating GaN quantum disks , 1998 .

[67]  Takashi Fukui,et al.  Fabrication and characterization of freestanding GaAs/AlGaAs core-shell nanowires and AlGaAs nanotubes by using selective-area metalorganic vapor phase epitaxy , 2005 .

[68]  Hee Won Seo,et al.  Strained gallium nitride nanowires , 2002 .

[69]  P. Roentgen,et al.  GaInAs/InP selective area metalorganic vapor phase epitaxy for one‐step‐grown buried low‐dimensional structures , 1990 .

[70]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[71]  Supratik Guha,et al.  Characteristics of vapor–liquid–solid grown silicon nanowire solar cells , 2009 .

[72]  Takashi Fukui,et al.  Selective-area growth of vertically aligned GaAs and GaAs/AlGaAs core–shell nanowires on Si(111) substrate , 2009, Nanotechnology.

[73]  S. Fan,et al.  Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction , 1997 .

[74]  Charles M. Lieber,et al.  GaN nanowire lasers with low lasing thresholds , 2005 .

[75]  Y. Kobayashi,et al.  Phase Diagram of GaAs (111)B Surface during Metal-Organic Chemical Vapor Deposition Measured by Surface Photo-Absorption , 1995 .

[76]  M. Mori,et al.  Growth of Self-Organized GaN Nanostructures on Al2O3(0001) by RF-Radical Source Molecular Beam Epitaxy , 1997 .

[77]  E. Lundgren,et al.  GaAs/AlGaAs nanowire heterostructures studied by scanning tunneling microscopy. , 2007, Nano letters.

[78]  Yang Jiang,et al.  Synthesis and Lasing Properties of Highly Ordered CdS Nanowire Arrays , 2007 .

[79]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[80]  Lars Samuelson,et al.  Epitaxial III-V nanowires on silicon , 2004 .

[81]  Lars Samuelson,et al.  Epitaxially grown GaP/GaAs1−xPx/GaP double heterostructure nanowires for optical applications , 2005 .

[82]  K. Tateno,et al.  Characterization of Individual GaAs/AlGaAs Self-Standing Nanowires by Cathodoluminescence Technique using Transmission Electron Microscope , 2008 .

[83]  G. Abstreiter,et al.  Prismatic quantum heterostructures synthesized on molecular-beam epitaxy GaAs nanowires. , 2008, Small.

[84]  T. Watanabe,et al.  Orientation-dependent Ga surface diffusion in molecular beam epitaxy of GaAs on GaAs patterned substrates , 1997 .

[85]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[86]  Kelly P. Knutsen,et al.  Single gallium nitride nanowire lasers , 2002, Nature materials.

[87]  Eicke R. Weber,et al.  Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport , 2001 .

[88]  T. Fukui,et al.  Growth and Characterization of a GaAs Quantum Well Buried in GaAsP/GaAs Vertical Heterostructure Nanowires by Selective-Area Metal Organic Vapor Phase Epitaxy , 2011 .

[89]  Takashi Fukui,et al.  Fabrication of InP∕InAs∕InP core-multishell heterostructure nanowires by selective area metalorganic vapor phase epitaxy , 2006 .

[90]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[91]  Lars Samuelson,et al.  Au-free epitaxial growth of InAs nanowires. , 2006, Nano letters.

[92]  P. Yang,et al.  Self-Organized GaN Quantum Wire UV Lasers , 2003 .

[93]  J. Morante,et al.  Catalyst-free nanowires with axial InxGa1−xAs/GaAs heterostructures , 2009, Nanotechnology.

[94]  Y. Kajikawa,et al.  Optical Matrix Elements in (110)-Oriented Quantum Wells , 1991 .

[95]  Eicke R. Weber,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers. , 2001 .

[96]  Charles M. Lieber,et al.  High Performance Silicon Nanowire Field Effect Transistors , 2003 .

[97]  R. Clough,et al.  The preparation and properties of vapor- deposited epitaxial InAs sub 1-x P sub x using arsine and phosphine. , 1966 .