Quantum Dissipative Systems and Feedback Control Design by Interconnection

The purpose of this paper is to extend J.C. Willems' theory of dissipative systems to open quantum systems described by quantum noise models. This theory, which combines ideas from quantum physics and control theory, provides useful methods for analysis and design of dissipative quantum systems. We describe the interaction of the plant and a class of external systems, called exosystems, in terms of feedback networks of interconnected open quantum systems. Our results include an infinitesimal characterization of the dissipation property, which generalizes the well-known Positive Real and Bounded Real Lemmas, and is used to study some properties of quantum dissipative systems. We also show how to formulate control design problems using network models for open quantum systems, which implements Willems' “control by interconnection” for open quantum systems. This control design formulation includes, for example, standard problems of stabilization, regulation, and robust control.

[1]  Gardiner,et al.  Driving a quantum system with the output field from another driven quantum system. , 1993, Physical review letters.

[2]  M. James,et al.  Stability, gain, and robustness in quantum feedback networks (13 pages) , 2005, quant-ph/0511140.

[3]  Carmichael,et al.  Quantum trajectory theory for cascaded open systems. , 1993, Physical review letters.

[4]  P. Moylan Implications of passivity in a class of nonlinear systems , 1974 .

[5]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[6]  Bernard Yurke,et al.  Quantum network theory , 1984 .

[7]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[8]  Milburn,et al.  All-optical versus electro-optical quantum-limited feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[9]  H. M. Wiseman,et al.  Atom-laser coherence and its control via feedback. , 2002 .

[10]  Franklin Fa-Kun Kuo,et al.  Network analysis and synthesis , 1962 .

[11]  Matthew R. James,et al.  An Introduction to Quantum Filtering , 2006, SIAM Journal of Control and Optimization.

[12]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[13]  J. Willems Dissipative dynamical systems part I: General theory , 1972 .

[14]  ControlJan C. WillemsAbstract Open Dynamical Systems and Their Control , 1998 .

[15]  E. Merzbacher Quantum mechanics , 1961 .

[16]  George Danezis,et al.  Prying Data out of a Social Network , 2009, 2009 International Conference on Advances in Social Network Analysis and Mining.

[17]  Tamer Basar Dissipative Dynamical SystemsPart I: General Theory , 2001 .

[18]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[19]  J. Willems On interconnections, control, and feedback , 1997, IEEE Trans. Autom. Control..

[20]  L. Schiff,et al.  Quantum Mechanics, 3rd ed. , 1973 .

[21]  P. Moylan,et al.  The stability of nonlinear dissipative systems , 1976 .

[22]  Jan C. Willems,et al.  Control as interconnection , 1995 .

[23]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[24]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[25]  John K. Stockton,et al.  Adaptive homodyne measurement of optical phase. , 2002, Physical review letters.

[26]  P. Moylan,et al.  Dissipative Dynamical Systems: Basic Input-Output and State Properties , 1980 .

[27]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[28]  J. Willems,et al.  Synthesis of dissipative systems using quadratic differential forms: part II , 2002, IEEE Trans. Autom. Control..

[29]  Matthew R. James,et al.  The risk-sensitive index and theH2 andH∞, norms for nonlinear systems , 1995, Math. Control. Signals Syst..

[30]  Harry L. Trentelman,et al.  H∞ control in a behavioral context: the full information case , 1999, IEEE Trans. Autom. Control..

[31]  M.R. James,et al.  H∞ Control of Linear Quantum Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[32]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[33]  Arjan van der Schaft,et al.  Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems , 2002, Autom..

[34]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[35]  A. Frigerio,et al.  Stationary states of quantum dynamical semigroups , 1978 .

[36]  Romeo Ortega,et al.  Adaptive motion control of rigid robots: a tutorial , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[37]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[38]  Hendra Ishwara Nurdin,et al.  Network Synthesis of Linear Dynamical Quantum Stochastic Systems , 2008, SIAM J. Control. Optim..

[39]  Claus Kiefer,et al.  Quantum Measurement and Control , 2010 .

[40]  M. Sentís Quantum theory of open systems , 2002 .

[41]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[42]  Ian R. Petersen,et al.  Robust Properties of Risk-Sensitive Control , 2000, Math. Control. Signals Syst..

[43]  H. Carmichael An open systems approach to quantum optics , 1993 .

[44]  M. R. James,et al.  Quantum Feedback Networks: Hamiltonian Formulation , 2008, 0804.3442.

[45]  Matthew R. James,et al.  The Series Product and Its Application to Quantum Feedforward and Feedback Networks , 2007, IEEE Transactions on Automatic Control.

[46]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .

[47]  Louis Weinberg,et al.  Network Analysis and Synthesis , 1962 .

[48]  G. Zames On the input-output stability of time-varying nonlinear feedback systems Part one: Conditions derived using concepts of loop gain, conicity, and positivity , 1966 .

[49]  Romeo Ortega,et al.  Putting energy back in control , 2001 .

[50]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[51]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[52]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[53]  Hidenori Kimura,et al.  Transfer function approach to quantum Control-Part II: Control concepts and applications , 2003, IEEE Trans. Autom. Control..

[54]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[55]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .