Improving the learnability of classifiers for Sanskrit OCR corrections

corrections Devaraja Adiga1, Rohit Saluja2, Vaibhav Agrawal3, Ganesh Ramakrishnan1, Parag Chaudhuri1, K. Ramasubramanian1 and Malhar Kulkarni1 1Indian Institute of Technology, Bombay, Mumbai, India 2IITB-Monash Research Academy, Mumbai, India 3Indian Institute of Technology, Kharagpur, India pdadiga@iitb.ac.in, rohitsaluja@cse.iitb.ac.in, vaibhav@iitkgp.ac.in {ganesh,paragc}@cse.iitb.ac.in, {ram,malhar}@hss.iitb.ac.in

[1]  Daniel S. Hirschberg,et al.  Algorithms for the Longest Common Subsequence Problem , 1977, JACM.

[2]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..

[3]  R. Polikar,et al.  Ensemble based systems in decision making , 2006, IEEE Circuits and Systems Magazine.

[4]  Ben Hutchinson,et al.  Using the Web for Language Independent Spellchecking and Autocorrection , 2009, EMNLP.

[5]  Ahmad Abdulkader,et al.  Low Cost Correction of OCR Errors Using Learning in a Multi-Engine Environment , 2009, 2009 10th International Conference on Document Analysis and Recognition.

[6]  C. V. Jawahar,et al.  Error Detection in Highly Inflectional Languages , 2013, 2013 12th International Conference on Document Analysis and Recognition.

[7]  Harikrishna Narasimhan,et al.  On the Statistical Consistency of Plug-in Classifiers for Non-decomposable Performance Measures , 2014, NIPS.

[8]  Sachin S. Talathi,et al.  Improving performance of recurrent neural network with relu nonlinearity , 2015, ArXiv.

[9]  Ganesh Ramakrishnan,et al.  Error Detection and Corrections in Indic OCR Using LSTMs , 2017, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).