Hemispherically-Unified Surface Maps of Human Cerebral Cortex: Reliability and Hemispheric Asymmetries

Understanding the anatomical and structural organization of the cerebral cortex is facilitated by surface-based analysis enabled by FreeSurfer, Caret, and related tools. Here, we examine the precision of FreeSurfer parcellation of the cortex and introduce a method to align FreeSurfer-registered left and right hemispheres onto a common template in order to characterize hemispheric asymmetries. The results are visualized using Mollweide projections, an area-preserving map. The regional distribution, inter-hemispheric asymmetries and intersubject variability in cortical curvature, sulcal depth, cortical thickness, and cortical surface area of 138 young, right handed subjects were analyzed on the Mollweide projection map of the common spherical space. The results show that gyral and sulcal structures are aligned with high but variable accuracy in different cortical regions and show consistent hemispheric asymmetries that are maximal in posterior temporal regions.

[1]  A. Dale,et al.  Distinct genetic influences on cortical surface area and cortical thickness. , 2009, Cerebral cortex.

[2]  Alan C. Evans,et al.  Positional and surface area asymmetry of the human cerebral cortex , 2009, NeuroImage.

[3]  Timothy Edward John Behrens,et al.  Functional Asymmetry for Auditory Processing in Human Primary Auditory Cortex , 2003, The Journal of Neuroscience.

[4]  Anderson M. Winkler,et al.  Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies , 2010, NeuroImage.

[5]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[6]  Stephen M. Smith,et al.  Evidence for abnormalities of cortical development in adolescent-onset schizophrenia , 2008, NeuroImage.

[7]  Jonathan Winawer,et al.  Imaging retinotopic maps in the human brain , 2011, Vision Research.

[8]  Timothy J. Herron,et al.  Phonological Processing in Human Auditory Cortical Fields , 2011, Front. Hum. Neurosci..

[9]  Michael S. Gazzaniga,et al.  Brainprints: Computer-Generated Two-Dimensional Maps of the Human Cerebral Cortex in vivo , 1989, Journal of Cognitive Neuroscience.

[10]  A. Dale,et al.  Thinning of the cerebral cortex in aging. , 2004, Cerebral cortex.

[11]  A. Toga,et al.  Mapping brain asymmetry , 2003, Nature Reviews Neuroscience.

[12]  A. Toga,et al.  Hemispheric asymmetries in cortical thickness. , 2006, Cerebral cortex.

[13]  Jonathan R. Polimeni,et al.  Near-isometric flattening of brain surfaces , 2010, NeuroImage.

[14]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[15]  S. Kastner,et al.  Complex organization of human primary motor cortex: a high-resolution fMRI study. , 2008, Journal of neurophysiology.

[16]  Ayse Pinar Saygin,et al.  Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data , 2006, NeuroImage.

[17]  John G. Csernansky,et al.  Open Access Series of Imaging Studies (OASIS): Cross-sectional MRI Data in Young, Middle Aged, Nondemented, and Demented Older Adults , 2007, Journal of Cognitive Neuroscience.

[18]  David M. Goldberg,et al.  Flexion and Skewness in Map Projections of the Earth , 2007, Cartogr. Int. J. Geogr. Inf. Geovisualization.

[19]  A M Dale,et al.  Measuring the thickness of the human cerebral cortex from magnetic resonance images. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[20]  John W. Harwell,et al.  Cortical parcellations of the macaque monkey analyzed on surface-based atlases. , 2012, Cerebral cortex.

[21]  Steven Robbins,et al.  An unbiased iterative group registration template for cortical surface analysis , 2007, NeuroImage.

[22]  Jean-Francois Mangin,et al.  Cortical sulci recognition and spatial normalization , 2011, Medical Image Anal..

[23]  Dae-Shik Kim,et al.  Computer‐based morphometry of brain , 2010, Int. J. Imaging Syst. Technol..

[24]  B. Argall,et al.  Simplified intersubject averaging on the cortical surface using SUMA , 2006, Human brain mapping.

[25]  S. Francis,et al.  Mapping human somatosensory cortex in individual subjects with 7 T functional MRI 1 Running title : Mapping human somatosensory cortex , 2010 .

[26]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[27]  Teemu Rinne,et al.  Frontiers in Systems Neuroscience Systems Neuroscience , 2022 .

[28]  Arnaud Cachia,et al.  In-vivo measurement of cortical morphology: means and meanings. , 2010, Current opinion in neurology.

[29]  Christian Gaser,et al.  Computational Morphometry for Detecting Changes in Brain Structure Due to Development, Aging, Learning, Disease and Evolution , 2009, Front. Neuroinform..

[30]  John G. Csernansky,et al.  Comparing surface-based and volume-based analyses of functional neuroimaging data in patients with schizophrenia , 2008, NeuroImage.

[31]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[32]  Alan C. Evans,et al.  Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface. , 2010, Cerebral cortex.

[33]  M M Mesulam,et al.  Location of the central sulcus via cortical thickness of the precentral and postcentral gyri on MR. , 1996, AJNR. American journal of neuroradiology.

[34]  P. Ellen Grant,et al.  A methodology for analyzing curvature in the developing brain from preterm to adult , 2008, Int. J. Imaging Syst. Technol..

[35]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[36]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[37]  J. Detre,et al.  Absence of changes in cortical thickness in patients with migraine , 2011, Cephalalgia : an international journal of headache.

[38]  Jae-Hun Kim,et al.  Spatial accuracy of fMRI activation influenced by volume- and surface-based spatial smoothing techniques , 2007, NeuroImage.

[39]  Kenneth Stephenson,et al.  Cortical cartography using the discrete conformal approach of circle packings , 2004, NeuroImage.

[40]  Alan J. Thomas,et al.  Cortical thickness and VBM-DARTEL in late-life depression. , 2011, Journal of affective disorders.

[41]  K. Amunts,et al.  Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. , 2008, Cerebral cortex.

[42]  Timothy J. Herron,et al.  Regional variation, hemispheric asymmetries and gender differences in pericortical white matter , 2011, NeuroImage.

[43]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Eileen Luders,et al.  Asymmetries of cortical thickness: effects of handedness, sex, and schizophrenia , 2007, Neuroreport.

[45]  N. Logothetis,et al.  Flat map areal topography in Macaca mulatta based on combined MRI and histology. , 2010, Magnetic resonance imaging.

[46]  David N. Kennedy,et al.  Human cerebral cortex: A system for the integration of volume- and surface-based representations , 2006, NeuroImage.

[47]  Timothy G. Feeman Equal Area World Maps: A Case Study , 2000, SIAM Rev..

[48]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[49]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  B. Wandell,et al.  Visualization and Measurement of the Cortical Surface , 2000, Journal of Cognitive Neuroscience.

[51]  John P. Snyder,et al.  Map Projection Transformation: Principles and Applications , 1999 .

[52]  D. V. van Essen,et al.  A Population-Average, Landmark- and Surface-based (PALS) atlas of human cerebral cortex. , 2005, NeuroImage.

[53]  A. Dale,et al.  Regional and progressive thinning of the cortical ribbon in Huntington’s disease , 2002, Neurology.

[54]  Nikolaus Weiskopf,et al.  A comparison between voxel-based cortical thickness and voxel-based morphometry in normal aging , 2009, NeuroImage.

[55]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[56]  Dharmendra S. Modha,et al.  A Conceptual Cortical Surface Atlas , 2009, PloS one.

[57]  山浦 晶 Atlas of the Cerebral Sulci, Michio Ono, Stefan Kubik and Chad D. Abernathey著, Georg Thieme Verlag, Stuttgart, New York 1990(らいぶらりい) , 1992 .

[58]  Gretel Sanabria-Diaz,et al.  Surface area and cortical thickness descriptors reveal different attributes of the structural human brain networks , 2010, NeuroImage.

[59]  W. Tobler The hyperelliptical and other new pseudo cylindrical equal area map projections , 1973 .

[60]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[61]  René Westerhausen,et al.  Morphologic asymmetry of the human anterior cingulate cortex , 2007, NeuroImage.

[62]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[63]  Nuria Bargallo,et al.  Assessment of cortical degeneration in patients with Parkinson's disease by voxel‐based morphometry, cortical folding, and cortical thickness , 2012, Human brain mapping.