Development of chipscale chalcogenide glass based infrared chemical sensors

In this paper, we review the design, processing, and characterization of novel planar infrared chemical sensors. Chalcogenide glasses are identified as the material of choice for sensing given their wide infrared transparency as well as almost unlimited capacity for composition alloying and property tailoring. Three generations of on-chip spectroscopic chemical sensor devices we have developed: waveguide evanescent sensors, micro-disk cavity-enhanced sensors and micro-cavity photothermal sensors are discussed.

[1]  Martin Richardson,et al.  PROGRESS ON THE FABRICATION OF ON-CHIP, INTEGRATED CHALCOGENIDE GLASS (CHG)-BASED SENSORS , 2010 .

[2]  Kathleen Richardson,et al.  Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. , 2007, Optics express.

[3]  Kathleen Richardson,et al.  Demonstration of chalcogenide glass racetrack microresonators. , 2008, Optics letters.

[4]  Juejun Hu,et al.  Cavity-Enhanced IR Absorption in Planar Chalcogenide Glass Microdisk Resonators: Experiment and Analysis , 2009, Journal of Lightwave Technology.

[5]  Juejun Hu,et al.  Design guidelines for optical resonator biochemical sensors , 2009 .

[6]  Michel Couzi,et al.  Correlation between physical, optical and structural properties of sulfide glasses in the system Ge–Sb–S , 2006 .

[7]  S. Shopova,et al.  Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes. , 2007, Optics express.

[8]  J Lucas,et al.  Metabolic imaging of tissues by infrared fiber-optic spectroscopy: an efficient tool for medical diagnosis. , 2004, Journal of biomedical optics.

[9]  M. Lipson,et al.  Cavity-enhanced on-chip absorption spectroscopy using microring resonators. , 2008, Optics express.

[10]  Stephen E. Bialkowski,et al.  Photothermal spectroscopy methods for chemical analysis , 1995 .

[11]  Joseph Maria Kumar Irudayaraj,et al.  Detection and fingerprinting of pathogens : Mid-IR biosensor using amorphous chalcogenide films , 2008 .

[12]  André Conjusteau,et al.  Finesse and sensitivity gain in cavity-enhanced absorption spectroscopy of biomolecules in solution. , 2006, Optics express.

[13]  Rajan P Kulkarni,et al.  Label-Free, Single-Molecule Detection with Optical Microcavities , 2007, Science.

[14]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[15]  Bruno Bureau,et al.  Advances in chalcogenide fiber evanescent wave biochemical sensing. , 2006, Analytical biochemistry.

[16]  Ralf Siebert,et al.  Infrared integrated optical evanescent field sensor for gas analysis: Part I: System design , 2005 .

[17]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[18]  C C Davis,et al.  Phase fluctuation optical heterodyne spectroscopy of gases. , 1981, Applied optics.

[19]  Joel M. Harris,et al.  Laser induced thermal lens effect for calorimetric trace analysis , 1979 .

[20]  Kathleen Richardson,et al.  Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow. , 2010, Optics express.

[21]  Kathleen Richardson,et al.  Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. , 2008, Optics letters.

[22]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[23]  Juejun Hu,et al.  Ultra-sensitive chemical vapor detection using micro-cavity photothermal spectroscopy. , 2010, Optics express.

[24]  Florent Colas,et al.  Chalcogenide Glass Optical Waveguides for Infrared Biosensing , 2009, Sensors.

[25]  Jeonghoon Lee,et al.  Photothermal Interferometric Aerosol Absorption Spectrometry , 2007 .

[26]  Vladimir S. Ilchenko,et al.  High-Q whispering-gallery mode sensor in liquids , 2002, SPIE LASE.