Female human iPSCs retain an inactive X chromosome.

[1]  G. Daley,et al.  Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. , 2010, Cell stem cell.

[2]  C. Lengner,et al.  Human embryonic stem cells with biological and epigenetic characteristics similar to those of mouse ESCs , 2010, Proceedings of the National Academy of Sciences.

[3]  Jennifer A. Erwin,et al.  Derivation of Pre-X Inactivation Human Embryonic Stem Cells under Physiological Oxygen Concentrations , 2010, Cell.

[4]  G. Daley,et al.  Telomere elongation in induced pluripotent stem cells from dyskeratosis congenita patients , 2009, Nature.

[5]  Kristopher L. Nazor,et al.  Adult mice generated from induced pluripotent stem cells , 2009, Nature.

[6]  Qi Zhou,et al.  iPS cells produce viable mice through tetraploid complementation , 2009, Nature.

[7]  Mike J. Mason,et al.  Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. , 2009, Cell stem cell.

[8]  J. Gécz,et al.  The genetic landscape of intellectual disability arising from chromosome X. , 2009, Trends in genetics : TIG.

[9]  I. Jonkers,et al.  X chromosome inactivation is initiated in human preimplantation embryos. , 2009, American journal of human genetics.

[10]  J. Nichols,et al.  Naive and primed pluripotent states. , 2009, Cell stem cell.

[11]  Paul Pavlidis,et al.  Histone deacetylase inhibition elicits an evolutionarily conserved self-renewal program in embryonic stem cells. , 2009, Cell stem cell.

[12]  Anne Lindgren,et al.  Directed Differentiation of Human‐Induced Pluripotent Stem Cells Generates Active Motor Neurons , 2009, Stem cells.

[13]  J. Nichols,et al.  Klf4 reverts developmentally programmed restriction of ground state pluripotency , 2009, Development.

[14]  K. Hochedlinger,et al.  Induced Pluripotent Stem Cell Generation Using a Single Lentiviral Stem Cell Cassette , 2009, Stem cells.

[15]  James A. Thomson,et al.  Induced pluripotent stem cells from a spinal muscular atrophy patient , 2009, Nature.

[16]  Jeannie T. Lee,et al.  X chromosome dosage compensation: how mammals keep the balance. , 2008, Annual review of genetics.

[17]  George Q. Daley,et al.  Disease-Specific Induced Pluripotent Stem Cells , 2008, Cell.

[18]  Hynek Wichterle,et al.  Induced Pluripotent Stem Cells Generated from Patients with ALS Can Be Differentiated into Motor Neurons , 2008, Science.

[19]  J. Lawrence,et al.  X‐inactivation reveals epigenetic anomalies in most hESC but identifies sublines that initiate as expected , 2008, Journal of cellular physiology.

[20]  R. Rowntree,et al.  X-chromosome inactivation and epigenetic fluidity in human embryonic stem cells , 2008, Proceedings of the National Academy of Sciences.

[21]  M. Pellegrini,et al.  X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations , 2008, Proceedings of the National Academy of Sciences.

[22]  K. Hochedlinger,et al.  Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. , 2008, Cell stem cell.

[23]  Shulan Tian,et al.  Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells , 2007, Science.

[24]  Jeannie T. Lee,et al.  Dosage Compensation in the Mouse Balances Up-Regulation and Silencing of X-Linked Genes , 2007, PLoS biology.

[25]  T. Ichisaka,et al.  Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors , 2007, Cell.

[26]  T. Ichisaka,et al.  Generation of germline-competent induced pluripotent stem cells , 2007, Nature.

[27]  R. Jaenisch,et al.  In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state , 2007, Nature.

[28]  G. Churchill,et al.  Characterization of human embryonic stem cell lines by the International Stem Cell Initiative , 2007, Nature Biotechnology.

[29]  J. Utikal,et al.  Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. , 2007, Cell stem cell.

[30]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[31]  J. Malley,et al.  Global analysis of X-chromosome dosage compensation , 2006, Journal of biology.

[32]  Christine M Disteche,et al.  Dosage compensation of the active X chromosome in mammals , 2006, Nature Genetics.

[33]  J. Lawrence,et al.  X‐Inactivation Status Varies in Human Embryonic Stem Cell Lines , 2005, Stem cells.

[34]  N. Benvenisty,et al.  Gene trap as a tool for genome annotation and analysis of X chromosome inactivation in human embryonic stem cells. , 2004, Nucleic acids research.

[35]  F. Baas,et al.  Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. , 2003, Human molecular genetics.

[36]  N. Brockdorff,et al.  Establishment of histone h3 methylation on the inactive X chromosome requires transient recruitment of Eed-Enx1 polycomb group complexes. , 2003, Developmental cell.

[37]  Hengbin Wang,et al.  Role of Histone H3 Lysine 27 Methylation in X Inactivation , 2003, Science.

[38]  R. Jaenisch,et al.  A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. , 2000, Molecular cell.

[39]  R. Jaenisch,et al.  Xist-deficient mice are defective in dosage compensation but not spermatogenesis. , 1997, Genes & development.

[40]  J. Mcneil,et al.  XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure , 1996, The Journal of cell biology.

[41]  Eric P. Hoffman,et al.  Dystrophin: The protein product of the duchenne muscular dystrophy locus , 1987, Cell.