Herschel spectral mapping of the Helix nebula (NGC 7293) - Extended CO photodissociation and OH+ emission

Context. The Helix nebula (NGC 7293) is our closest planetary nebulae. Therefore, it is an ideal template for photochemical studies at small spatial scales in planetary nebulae. Aims. We aim to study the spatial distribution of the atomic and the molecular gas, and the structure of the photodissociation region along the western rims of the Helix nebula as seen in the submillimeter range with Herschel. Methods. We used five SPIRE FTS pointing observations to make atomic and molecular spectral maps. We analyzed the molecular gas by modeling the CO rotational lines using a non-local thermodynamic equilibrium (non-LTE) radiative transfer model. Results. For the first time, we have detected extended OH+ emission in a planetary nebula. The spectra towards the Helix nebula also show CO emission lines (from J = 4 to 8), [N ii] at 1461 GHz from ionized gas, and [C i] (3P2–3P1), which together with the OH+ lines trace extended CO photodissociation regions along the rims. The estimated OH+ column density is ~ 1012 − 1013 cm-2. The CH+ (1–0) line was not detected at the sensitivity of our observations. Non-LTE models of the CO excitation were used to constrain the average gas density (n(H2) ~ (1 − 5) × 105 cm-3) and the gas temperature (Tk ~ 20−40 K). Conclusions. The SPIRE spectral-maps suggest that CO arises from dense and shielded clumps in the western rims of the Helix nebula, whereas OH+ and [C i] lines trace the diffuse gas and the UV and X-ray illuminated clump surfaces where molecules reform after CO photodissociation. The [N ii] line traces a more diffuse ionized gas component in the interclump medium.

[1]  R. Xu,et al.  PULSAR WIND MODEL FOR THE SPIN-DOWN BEHAVIOR OF INTERMITTENT PULSARS , 2013, 1312.1016.

[2]  M. Gerin,et al.  Spatially extended OH + emission from the Orion Bar and Ridge. ⋆ , 2013, 1311.1977.

[3]  N. Woolf,et al.  THE HELIX NEBULA VIEWED IN HCO+: LARGE-SCALE MAPPING OF THE J = 1 → 0 TRANSITION , 2013 .

[4]  S. Molinari,et al.  Herschel observations of the Sagittarius B2 cores: Hydrides, warm CO, and cold dust , 2013, 1307.0335.

[5]  B. Swinyard,et al.  Beam profile for the Herschel-SPIRE Fourier transform spectrometer. , 2013, Applied optics.

[6]  P. Encrenaz,et al.  HERSCHEL* FAR-INFRARED SPECTROSCOPY OF THE GALACTIC CENTER. HOT MOLECULAR GAS: SHOCKS VERSUS RADIATION NEAR Sgr A , 2013, 1305.1119.

[7]  L. Ziurys,et al.  CHEMICAL COMPLEXITY IN THE HELIX NEBULA: MULTI-LINE OBSERVATIONS OF H2CO, HCO+, AND CO , 2013 .

[8]  K. Umetsu MODEL-FREE MULTI-PROBE LENSING RECONSTRUCTION OF CLUSTER MASS PROFILES , 2013, 1302.0514.

[9]  T. Rivinius,et al.  Circumstellar Dynamics at High Resolution , 2012 .

[10]  M. Wittkowski,et al.  Herschel Planetary Nebula Survey (HerPlaNS) , 2012, 1404.2431.

[11]  Christine D. Wilson,et al.  SUBMILLIMETER LINE SPECTRUM OF THE SEYFERT GALAXY NGC 1068 FROM THE HERSCHEL-SPIRE FOURIER TRANSFORM SPECTROMETER , 2012, 1208.6132.

[12]  J. Goicoechea,et al.  THE CHEMISTRY OF INTERSTELLAR OH+, H2O+, AND H3O+: INFERRING THE COSMIC-RAY IONIZATION RATES FROM OBSERVATIONS OF MOLECULAR IONS , 2012, 1205.6446.

[13]  Astrophysics,et al.  THE CHANDRA X-RAY SURVEY OF PLANETARY NEBULAE (ChanPlaNS): PROBING BINARITY, MAGNETIC FIELDS, AND WIND COLLISIONS , 2012, 1204.6055.

[14]  G. Chabrier,et al.  Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars , 2010, 1008.4288.

[15]  P. Hennebelle,et al.  Interstellar OH+, H2O+ and H3O+ along the sight-line to G10.6–0.4 , 2010, 1005.5653.

[16]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[17]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[18]  A. Belloche,et al.  First interstellar detection of OH , 2010, 1004.2627.

[19]  J. Goicoechea,et al.  THE CHEMISTRY OF VIBRATIONALLY EXCITED H2 IN THE INTERSTELLAR MEDIUM , 2010, 1003.1375.

[20]  UK.,et al.  Flows along cometary tails in the Helix planetary nebula NGC 7293 , 2009, 0911.4843.

[21]  N. Woolf,et al.  MOLECULAR SURVIVAL IN EVOLVED PLANETARY NEBULAE: DETECTION OF H2CO, c-C3H2, AND C2H IN THE HELIX , 2009 .

[22]  S. Viti,et al.  A “FIREWORK” OF H2 KNOTS IN THE PLANETARY NEBULA NGC 7293 (THE HELIX NEBULA) , 2009 .

[23]  S. Viti,et al.  Knots in the Helix Nebula found in H2 , 2009, 0906.2870.

[24]  H. Yamamoto,et al.  Clumpy photon-dominated regions in Carina - I. [C I] and mid-J CO lines in two 4'$\times$4' fields , 2007, 0711.1320.

[25]  Galway,et al.  VLT/near-infrared integral field spectrometer observations of molecular hydrogen lines in the knots of the planetary nebula NGC 7293 (the Helix Nebula) , 2007, 0709.3065.

[26]  D. Monet,et al.  Trigonometric Parallaxes of Central Stars of Planetary Nebulae , 2006, astro-ph/0611543.

[27]  W. Latter,et al.  Infrared Observations of the Helix Planetary Nebula , 2006, astro-ph/0607541.

[28]  P. McCullough,et al.  The Multitude of Molecular Hydrogen Knots in the Helix Nebula , 2005, astro-ph/0509887.

[29]  Ireland,et al.  The creation of the Helix planetary nebula (NGC 7293) by multiple events , 2005, astro-ph/0504295.

[30]  A Multi-Instrument Study of the Helix Nebula Knots with the Hubble Space Telescope , 2005, astro-ph/0504210.

[31]  P. R. McCullough,et al.  Unraveling the Helix Nebula: Its Structure and Knots , 2004, astro-ph/0407556.

[32]  J. Cernicharo The Polymerization of Acetylene, Hydrogen Cyanide, and Carbon Chains in the Neutral Layers of Carbon-rich Proto-planetary Nebulae , 2004 .

[33]  P. J. Huggins,et al.  High-Resolution CO and H2 Molecular Line Imaging of a Cometary Globule in the Helix Nebula , 2002, astro-ph/0205516.

[34]  P. McCullough,et al.  Large-Scale Extended Emission around the Helix Nebula: Dust, Molecules, Atoms, and Ions , 2002 .

[35]  T. Millar,et al.  Gas‐phase models for the evolved planetary nebulae NGC 6781, M4‐9 and NGC 7293 , 2001 .

[36]  R. Gruendl,et al.  The Enigmatic X-Ray Point Sources at the Central Stars of NGC 6543 and NGC 7293 , 2001, astro-ph/0104270.

[37]  P. J. Huggins,et al.  The Molecular Envelope of the Helix Nebula , 1999 .

[38]  M. Meixner,et al.  NIRIM: A Dual‐Purpose Near‐Infrared (0.76–2.5 μm) Imaging Camera for Wide‐Field and High‐Resolution Imaging , 1999 .

[39]  K. Kwitter,et al.  Morphology and Composition of the Helix Nebula , 1999, astro-ph/9901060.

[40]  Alexander G. G. M. Tielens,et al.  Photodissociation Regions in the Interstellar Medium of Galaxies , 1999 .

[41]  C. O’Dell Imaging and Spectroscopy of the Helix Nebula: The Ring Is Actually a Disk , 1998 .

[42]  P. J. Huggins,et al.  Infrared Imaging and Spectroscopy of the Helix with ISOCAM , 1998 .

[43]  M. Barlow,et al.  Discovery of Far-Infrared Pure Rotational Transitions of CH+ in NGC 7027 , 1997 .

[44]  P. J. Huggins,et al.  Neutral Atomic Carbon in the Globules of the Helix , 1997, astro-ph/9703116.

[45]  T. Hartquist,et al.  Molecules in dense globules in planetary nebulae , 1994 .

[46]  S. Kwok,et al.  Two-temperature X-ray emission from the planetary nebula NGC 7293 , 1994 .

[47]  Linda J. Smith,et al.  Condensations in the planetary nebula NGC 7293: an origin in circumstellar SiO maser spots? , 1989 .

[48]  P. Goldsmith,et al.  HCN emission from OH infrared sources , 1985, Nature.

[49]  J. Bally,et al.  Erratum - Isotope-Selective Photodestruction of Carbon Monoxide , 1982 .

[50]  V. Rubin,et al.  Physical conditions and structure in NGC 7293, ''the Helix'' , 1975 .